Skip to main content
Log in

Forensically relevant SNaPshot® assays for human DNA SNP analysis: a review

  • Review
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Short tandem repeats are the gold standard for human identification but are not informative for forensic DNA phenotyping (FDP). Single-nucleotide polymorphisms (SNPs) as genetic markers can be applied to both identification and FDP. The concept of DNA intelligence emerged with the potential for SNPs to infer biogeographical ancestry (BGA) and externally visible characteristics (EVCs), which together enable the FDP process. For more than a decade, the SNaPshot® technique has been utilised to analyse identity and FDP-associated SNPs in forensic DNA analysis. SNaPshot is a single-base extension (SBE) assay with capillary electrophoresis as its detection system. This multiplexing technique offers the advantage of easy integration into operational forensic laboratories without the requirement for any additional equipment. Further, the SNP panels from SNaPshot® assays can be incorporated into customised panels for massively parallel sequencing (MPS). Many SNaPshot® assays are available for identity, BGA and EVC profiling with examples including the well-known SNPforID 52-plex identity assay, the SNPforID 34-plex BGA assay and the HIrisPlex EVC assay. This review lists the major forensically relevant SNaPshot® assays for human DNA SNP analysis and can be used as a guide for selecting the appropriate assay for specific identity and FDP applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jobling MA, Gill P (2004) Encoded evidence: DNA in forensic analysis. Nat Rev Genet 5:739–51

    Article  CAS  PubMed  Google Scholar 

  2. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choudhury A, Hazelhurst S, Meintjes A et al (2014) Population-specific common SNPs reflect demographic histories and highlight regions of genomic plasticity with functional relevance. BMC Genomics 15:1

    Article  Google Scholar 

  4. Gill P, Sparkes R, Tully G (2001) DNA profiling in forensic science. Nature Publishing Group

  5. Prinz M, Caragine T, Shaler R (2003) DNA testing as the primary tool for the victim identification effort after the World Trade Center terrorist attack. Proceedings of the 20th Congress of the International Society of Forensic Genetics

  6. Butler JM, Coble MD, Vallone PM (2007) STRs vs. SNPs: thoughts on the future of forensic DNA testing. Forensic Sci Med Pathol 3:200–5. doi:10.1007/s12024-007-0018-1

    Article  CAS  PubMed  Google Scholar 

  7. Budowle B, vanDaal A (2008) Forensically relevant SNP classes. Biotechniques 44:603–10

    Article  CAS  PubMed  Google Scholar 

  8. Kayser M, de Knijff P (2011) Improving human forensics through advances in genetics, genomics and molecular biology. Nat Rev Genet 12:179–92

    Article  CAS  PubMed  Google Scholar 

  9. Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci 85:7652–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walsh PS, Fildes N, Louie AS, Higuchi R (1991) Report of the blind trial of the Cetus Amplitype HLA DQ alpha forensic deoxyribonucleic acid (DNA) amplification and typing kit. J Forensic Sci 36:1551–6

    Article  CAS  PubMed  Google Scholar 

  11. Herrin G, Fildes N, Reynolds R (1994) Evaluation of the AmpliType PM DNA test system on forensic case samples. J Forensic Sci 39:1247

    Article  Google Scholar 

  12. Rascati RJ (2003) DNA profiling by multiplex PCR amplification and genotype determination by reverse dot-blot hybridization to sequence-specific oligonucleotide probes: Amplitype® PM & DQA1 amplification and analysis. In: O’Donnell MA (ed) Forensic DNA analysis. Association for Biology Laboratory Education (ABLE)., pp 173–90

    Google Scholar 

  13. Primorac D, Anđelinović Š, Definis-Gojanović M, Drmić-Hofman I (1996) Identification of war victims from mass graves in Croatia, Bosnia and Hercegovina by the use of standard forensic methods and DNA typing. J Forensic Sci 41:891–4

    Article  CAS  PubMed  Google Scholar 

  14. Baird ML (1998) Use of the AmpliType PM+ HLA DQA1 PCR amplification and typing kits for identity testing. Forensic DNA Profiling Protocols. Springer. pp. 261–77

  15. Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49:746

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mehta B, Daniel R, McNevin D (2013) High resolution melting (HRM) of forensically informative SNPs. Forensic Sci Int 4:e376–e7

    Google Scholar 

  17. Venables SJ, Mehta B, Daniel R, Walsh SJ, van Oorschot RAH, McNevin D (2014) Assessment of high resolution melting analysis as a potential SNP genotyping technique in forensic casework. Electrophoresis 35:3036–43. doi:10.1002/elps.201400089

    Article  CAS  PubMed  Google Scholar 

  18. Reed GH, Kent JO, Wittwer CT (2007) High resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608

    Article  CAS  PubMed  Google Scholar 

  19. Sobrino B, Brion M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–94

    Article  CAS  PubMed  Google Scholar 

  20. Krjutškov K, Viltrop T, Palta P et al (2009) Evaluation of the 124-plex SNP typing microarray for forensic testing. Forensic Sci Int Genet 4:43–8

    Article  PubMed  CAS  Google Scholar 

  21. Daniel R, Santos C, Phillips C et al (2015) A SNaPshot of next generation sequencing for forensic SNP analysis. Forensic Sci Int Genet 14:50–60

    Article  CAS  PubMed  Google Scholar 

  22. Wang Q, Fu L, Zhang X et al (2016) Expansion of a SNaPshot assay to a 55‐SNP multiplex: assay enhancements, validation, and power in forensic science. Electrophoresis 37:1310

    Article  CAS  PubMed  Google Scholar 

  23. Shumaker JM, Metspalu A, Caskey CT (1996) Mutation detection by solid phase primer extension. Hum Mutat 7:346–54

    Article  CAS  PubMed  Google Scholar 

  24. Braun A, Little DP, Köster H (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin Chem 43:1151–8

    CAS  PubMed  Google Scholar 

  25. Haff LA, Smirnov IP (1997) Multiplex genotyping of PCR products with MassTag-labeled primers. Nucleic Acid Res 25:3749–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Syvänen A-C (1999) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13:1–10

    Article  PubMed  Google Scholar 

  27. Sokolov BP (1990) Primer extension technique for the detection of single nucleotide in genomic DNA. Nucleic Acids Res 18:3671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Syvänen A-C, Aalto-Setälä K, Harju L, Kontula K, Söderlund H (1990) A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics 8:684–92

    Article  PubMed  Google Scholar 

  29. Tully G, Sullivan KM, Nixon P, Stones RE, Gill P (1996) Rapid detection of mitochondrial sequence polymorphisms using multiplex solid-phase fluorescent minisequencing. Genomics 34:107–13

    Article  CAS  PubMed  Google Scholar 

  30. Morley J, Bark J, Evans C, Perry J, Hewitt C, Tully G (1999) Validation of mitochondrial DNA minisequencing for forensic casework. Int J Legal Med 112:241–8

    Article  CAS  PubMed  Google Scholar 

  31. Grimes EA, Noake PJ, Dixon L, Urquhart A (2001) Sequence polymorphism in the human melanocortin 1 receptor gene as an indicator of the red hair phenotype. Forensic Sci Int 122:124–9

    Article  CAS  PubMed  Google Scholar 

  32. Applied Biosystems. ABI PRISM® SNaPshot™ Multiplex Kit. P/N 4323357 Rev. B ed. Thermo Fisher Scientific. pp. 1–42

  33. Podini D, Vallone PM (2009) SNP genotyping using multiplex single base primer extension assays. Single nucleotide polymorphisms. Springer. pp 379–91

  34. Fondevila M, Phillips C, Santos C et al (2013) Revision of the SNPforID 34-plex forensic ancestry test: assay enhancements, standard reference sample genotypes and extended population studies. Forensic Sci Int Genet 7:63–74

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez JJ, Phillips C, Børsting C et al (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27:1713–24

    Article  CAS  PubMed  Google Scholar 

  36. Phillips C, Aradas AF, Kriegel AK et al (2013) Eurasiaplex: a forensic SNP assay for differentiating European and South Asian ancestries. Forensic Sci Int Genet 7:359–66

    Article  CAS  PubMed  Google Scholar 

  37. Santos C, Phillips C, Fondevila M et al (2016) Pacifiplex: an ancestry-informative SNP panel centred on Australia and the Pacific region. Forensic Sci Int Genet 20:71–80

    Article  CAS  PubMed  Google Scholar 

  38. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vallone PM, Butler JM (2004) AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 37:226–31

    CAS  PubMed  Google Scholar 

  40. Owczarzy R, Tataurov AV, Wu Y et al (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36:W163–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13:134

    Article  CAS  Google Scholar 

  42. Phillips C, Salas A, Sánchez JJ et al (2007) Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet 1:273–80

    Article  CAS  PubMed  Google Scholar 

  43. Daniel R (2009) A new era in forensic intelligence: SNPs and the inference of biogeographical ancestry. University of Technology Sydney

  44. McNevin D, Bate A, Daniel R, Walsh SJ (2011) A preliminary mitochondrial DNA SNP genotyping assay for inferring genealogy. Aust J Forensic Sci 43:39–51

    Article  Google Scholar 

  45. Bouakaze C, Keyser C, Amory S, Crubezy E, Ludes B (2007) First successful assay of Y-SNP typing by SNaPshot minisequencing on ancient DNA. Int J Legal Med 121:493–9

    Article  CAS  PubMed  Google Scholar 

  46. Forensic S (1996) The evaluation of forensic DNA evidence. National Academies Press (US)

  47. Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–33

    Article  CAS  PubMed  Google Scholar 

  48. Doi Y, Yamamoto Y, Inagaki S, Shigeta Y, Miyaishi S, Ishizu H (2004) A new method for ABO genotyping using a multiplex single-base primer extension reaction and its application to forensic casework samples. Legal Med 6:213–23

    Article  CAS  PubMed  Google Scholar 

  49. Palacajornsuk P, Halter C, Isakova V et al (2009) Detection of blood group genes using multiplex SNaPshot method. Transfusion 49:740–9

    Article  CAS  PubMed  Google Scholar 

  50. Lee HY, Park MJ, Yoo J-E, Chung U, Han G-R, Shin K-J (2005) Selection of twenty-four highly informative SNP markers for human identification and paternity analysis in Koreans. Forensic Sci Int 148:107–12

    Article  CAS  PubMed  Google Scholar 

  51. Musgrave-Brown E, Ballard D, Balogh K et al (2007) Forensic validation of the SNPforID 52-plex assay. Forensic Sci Int Genet 1:186–90

    Article  PubMed  Google Scholar 

  52. Børsting C, Rockenbauer E, Morling N (2009) Validation of a single nucleotide polymorphism (SNP) typing assay with 49 SNPs for forensic genetic testing in a laboratory accredited according to the ISO 17025 standard. Forensic Sci Int Genet 4:34–42

    Article  PubMed  CAS  Google Scholar 

  53. Borsting C, Sanchez JJ, Hansen HE, Hansen AJ, Bruun HQ, Morling N (2008) Performance of the SNPforID 52 SNP-plex assay in paternity testing. Forensic Sci Int Genet 2:292–300

    Article  PubMed  Google Scholar 

  54. Schwark T, Meyer P, Harder M, Modrow J-H, von Wurmb-Schwark N (2012) The SNPforID assay as a supplementary method in kinship and trace analysis. Transfus Med Hemother 39:187–93

    Article  PubMed  PubMed Central  Google Scholar 

  55. Barbaro A, Phillips C, Fondevila M, Carracedo Á, Lareu M (2009) Population data of 52 autosomal SNPs in Italian population. Forensic Sci Int Genet Suppl Ser 2:351–2

    Article  Google Scholar 

  56. Børsting C, Mogensen HS, Morling N (2013) Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples. Forensic Sci Int Genet 7:345–52

    Article  PubMed  CAS  Google Scholar 

  57. Lou C, Cong B, Li S et al (2011) A SNaPshot assay for genotyping 44 individual identification single nucleotide polymorphisms. Electrophoresis 32:368–78

    Article  CAS  PubMed  Google Scholar 

  58. Westen AA, Matai AS, Laros JF et al (2009) Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples. Forensic Sci Int Genet 3:233–41

    Article  CAS  PubMed  Google Scholar 

  59. Li Z, Yan J, Tang D et al (2013) Validation of a multiplex system with 20 tri-allelic SNP loci for forensic identification purposes. Forensic Sci Int Genet Suppl Ser 4:e324–e5

    Article  Google Scholar 

  60. Oki T, Hayashi T, Ota M, Asamura H (2012) Development of multiplex assay with 16 SNPs on X chromosome for degraded samples. Legal Med 14:11–6

    Article  CAS  PubMed  Google Scholar 

  61. Freire-Aradas A, Fondevila M, Kriegel A-K et al (2012) A new SNP assay for identification of highly degraded human DNA. Forensic Sci Int Genet 6:341–9

    Article  CAS  PubMed  Google Scholar 

  62. Sanchez JJ, Borsting C, Hallenberg C, Buchard A, Hernandez A, Morling N (2003) Multiplex PCR and minisequencing of SNPs-a model with 35 Y chromosome SNPs. Forensic Sci Int 137:74–84

    Article  CAS  PubMed  Google Scholar 

  63. Vallone PM, Butler JM (2004) Y-SNP typing of US African American and Caucasian samples using allele-specific hybridization and primer extension. J Forensic Sci 49:723–32

    Article  CAS  PubMed  Google Scholar 

  64. Lessig R, Edelmann J, Zoledziewska M, Dobosz T, Fahr K, Kostrzewa M (2004) SNP-genotyping on human Y-chromosome for forensic purposes: comparison of two different methods. International Congress Series. Elsevier. pp. 334–6

  65. Brión M, Sanchez JJ, Balogh K et al (2005) Introduction of an single nucleodite polymorphism-based “major Y-chromosome haplogroup typing kit” suitable for predicting the geographical origin of male lineages. Electrophoresis 26:4411–20

    Article  PubMed  CAS  Google Scholar 

  66. van Oven M, Ralf A, Kayser M (2011) An efficient multiplex genotyping approach for detecting the major worldwide human Y-chromosome haplogroups. Int J Legal Med 125:879–85

    Article  PubMed  PubMed Central  Google Scholar 

  67. Onofri V, Alessandrini F, Turchi C, Pesaresi M, Buscemi L, Tagliabracci A (2006) Development of multiplex PCRs for evolutionary and forensic applications of 37 human Y chromosome SNPs. Forensic Sci Int 157:23–35

    Article  CAS  PubMed  Google Scholar 

  68. van Oven M, van den Tempel N, Kayser M (2012) A multiplex SNP assay for the dissection of human Y-chromosome haplogroup O representing the major paternal lineage in East and Southeast Asia. J Hum Genet 57:65–9

    Article  PubMed  CAS  Google Scholar 

  69. Park MJ, Lee HY, Kim NY, Lee EY, Yang WI, Shin K-J (2013) Y-SNP miniplexes for East Asian Y-chromosomal haplogroup determination in degraded DNA. Forensic Sci Int Genet 7:75–81

    Article  CAS  PubMed  Google Scholar 

  70. Coble M, Just R, OC JE et al (2004) Single nucleotide polymorphisms over the entire mtDNA genome that increase the power of forensic testing in Caucasians. Int J Leg Med 118:137–46

    Article  Google Scholar 

  71. Vallone PM, Just RS, Coble MD, Butler JM, Parsons TJ (2004) A multiplex allele-specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome. Int J Legal Med 118:147–57

    Article  PubMed  Google Scholar 

  72. Ziętkiewicz E, Witt M, Daca P et al (2012) Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet 53:41–60

    Article  PubMed  CAS  Google Scholar 

  73. Nelson TM, Just RS, Loreille O, Schanfield MS, Podini D (2007) Development of a multiplex single base extension assay for mitochondrial DNA haplogroup typing. Croat Med J 48:0–472

    Google Scholar 

  74. Mosquera-Miguel A, Alvarez-Iglesias V, Cerezo M, Lareu M, Carracedo A, Salas A (2009) Testing the performance of mtSNP minisequencing in forensic samples. Forensic Sci Int Genet 3:261–4

    Article  CAS  PubMed  Google Scholar 

  75. van Oven M, Vermeulen M, Kayser M (2011) Multiplex genotyping system for efficient inference of matrilineal genetic ancestry with continental resolution. Investig Genet 2:1–14

    Article  CAS  Google Scholar 

  76. Paneto GG, Koehnemann S, Martins JA, Cicarelli RM, Pfeiffer H (2011) A single multiplex PCR and SNaPshot minisequencing reaction of 42 SNPs to classify admixture populations into mitochondrial DNA haplogroups. Mitochondrion 11:296–302

    Article  CAS  PubMed  Google Scholar 

  77. Brandstätter A, Parsons TJ, Parson W (2003) Rapid screening of mtDNA coding region SNPs for the identification of West European Caucasian haplogroups. Int J Legal Med 117:291–8

    Article  PubMed  Google Scholar 

  78. Quintáns B, Alvarez-Iglesias V, Salas A, Phillips C, Lareu M, Carracedo A (2004) Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing. Forensic Sci Int 140:251–7

    Article  PubMed  CAS  Google Scholar 

  79. Grignani P, Peloso G, Achilli A et al (2006) Subtyping mtDNA haplogroup H by SNaPshot minisequencing and its application in forensic individual identification. Int J Legal Med 120:151–6

    Article  CAS  PubMed  Google Scholar 

  80. Köhnemann S, Sibbing U, Pfeiffer H, Hohoff C (2008) A rapid mtDNA assay of 22 SNPs in one multiplex reaction increases the power of forensic testing in European Caucasians. Int J Legal Med 122:517–23

    Article  PubMed  Google Scholar 

  81. Endicott P, Metspalu M, Stringer C, Macaulay V, Cooper A, Sanchez JJ (2006) Multiplexed SNP typing of ancient DNA clarifies the origin of Andaman mtDNA haplogroups amongst South Asian tribal populations. PLoS One 1:e81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Álvarez-Iglesias V, Jaime J, Carracedo A, Salas A (2007) Coding region mitochondrial DNA SNPs: targeting East Asian and Native American haplogroups. Forensic Sci Int Genet 1:44–55

    Article  PubMed  CAS  Google Scholar 

  83. Hu C-T, Yan J-W, Chen F et al (2015) Genetic analysis of 15 mtDNA SNP loci in Chinese Yi ethnic group using SNaPshot minisequencing. Gene

  84. Coutinho A, Valverde G, Fehren-Schmitz L et al (2014) AmericaPlex26: a SNaPshot multiplex system for genotyping the main human mitochondrial founder lineages of the Americas. PLoS One 26:e93292

    Article  CAS  Google Scholar 

  85. The Snipper 2.0: Binary AIM classification of individuals. University of Santiago de Compostela, Spain

  86. Phillips C, Prieto L, Fondevila M et al (2009) Ancestry analysis in the 11-M Madrid bomb attack investigation. PLoS One 4:e6583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Phillips C, Fondevila M, Vallone PM et al (2011) Characterization of US population samples using a 34plex ancestry informative SNP multiplex. Forensic Sci Int Genet Suppl Ser 3:e182–e3

    Article  Google Scholar 

  88. Daca-Roszak P, Pfeifer A, Żebracka-Gala J, Jarząb B, Witt M, Ziętkiewicz E (2016) EurEAs_Gplex—a new SNaPshot assay for continental population discrimination and gender identification. Forensic Sci Int Genet 20:89–100

    Article  CAS  PubMed  Google Scholar 

  89. de la Puente M, Santos C, Fondevila M et al (2016) The Global AIMs Nano set: a 31-plex SNaPshot assay of ancestry-informative SNPs. Forensic Sci Int Genet 22:81–8

    Article  PubMed  CAS  Google Scholar 

  90. Daniel R, Sanchez JJ, Nassif NT, Hernandez A, Walsh SJ (2009) Partial forensic validation of a 16plex SNP assay for the inference of biogeographical ancestry. Forensic Sci Int Genet Suppl Ser 2:477–8

    Article  Google Scholar 

  91. Kosoy R, Nassir R, Tian C et al (2009) Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 30:69–78

    Article  PubMed  PubMed Central  Google Scholar 

  92. Silva M, Zuccherato L, Soares-Souza G et al (2010) Development of two multiplex mini-sequencing panels of ancestry informative SNPs for studies in Latin Americans: an application to populations of the State of Minas Gerais (Brazil). Genet Mol Res 9:2069–85

    Article  CAS  PubMed  Google Scholar 

  93. Lins TC, Vieira RG, Abreu BS, Grattapaglia D, Pereira RW (2010) Genetic composition of Brazilian population samples based on a set of twenty-eight ancestry informative SNPs. Am J Hum Biol 22:187–92

    PubMed  Google Scholar 

  94. Corach D, Lao O, Bobillo C et al (2010) Inferring continental ancestry of Argentineans from autosomal, Y-chromosomal and mitochondrial DNA. Ann Hum Genet 74:65–76

    Article  CAS  PubMed  Google Scholar 

  95. Walsh S, Liu F, Ballantyne KN, Mv O, Lao O, Kayser M (2011) IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet 5:170–80

    Article  CAS  PubMed  Google Scholar 

  96. Walsh S, Liu F, Wollstein A et al (2013) The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci Int Genet 7:98–115

    Article  CAS  PubMed  Google Scholar 

  97. Walsh S, Lindenbergh A, Zuniga SB et al (2011) Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence. Forensic Sci Int Genet 5:464–71

    Article  CAS  PubMed  Google Scholar 

  98. Kastelic V, Pośpiech E, Draus-Barini J, Branicki W, Drobnič K (2013) Prediction of eye color in the Slovenian population using the IrisPlex SNPs. Croat Med J 54:381–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dembinski GM, Picard CJ (2014) Evaluation of the IrisPlex DNA-based eye color prediction assay in a United States population. Forensic Sci Int Genet 9:111–7. 101

    Article  CAS  PubMed  Google Scholar 

  100. Draus-Barini J, Walsh S, Pośpiech E et al (2013) Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains. Investig Genet 4:1–15

    Article  CAS  Google Scholar 

  101. Wurmbach E (2013) DNA assay development and validation for pigment-related features to assist in the identification of missing persons and human remains

    Google Scholar 

  102. Hart KL, Kimura SL, Mushailov V, Budimlija ZM, Prinz M, Wurmbach E (2013) Improved eye-and skin-color prediction based on 8 SNPs. Croat Med J 54:248–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ruiz Y, Phillips C, Gomez-Tato A et al (2013) Further development of forensic eye color predictive tests. Forensic Sci Int Genet 7:28–40

    Article  CAS  PubMed  Google Scholar 

  104. Kastelic V, Drobnič K (2012) A single-nucleotide polymorphism (SNP) multiplex system: the association of five SNPs with human eye and hair color in the Slovenian population and comparison using a Bayesian network and logistic regression model. Croat Med J 53:401–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bouakaze C, Keyser C, Crubezy E, Montagnon D, Ludes B (2009) Pigment phenotype and biogeographical ancestry form ancient skeletal remains: inferences from multiplexed autosomal SNP. Int J Leg Med 123:315–25

    Article  Google Scholar 

  106. Bulbul O, Filoglu G, Altuncul H et al (2011) A SNP multiplex for the simultaneous prediction of biogeographic ancestry and pigmentation type. Forensic Sci Int Genet Suppl Ser 3:e500–e1

    Article  Google Scholar 

  107. Gettings KB, Lai R, Johnson JL et al (2014) A 50-SNP assay for biogeographic ancestry and phenotype prediction in the US population. Forensic Sci Int Genet 8:101–8

    Article  CAS  PubMed  Google Scholar 

  108. Smith J, Godfrey H (2011) A SNaPshot™ assay for the identification of forensically important blowflies. Forensic Sci Int Genet Suppl Ser 3:e479–e80

    Article  Google Scholar 

  109. Huang C-H, Chang M-T, Huang M-C, Lee F-L (2011) Application of the SNaPshot minisequencing assay to species identification in the Lactobacillus casei group. Mol Cell Probes 25:153–7

    Article  CAS  PubMed  Google Scholar 

  110. Kitpipit T, Tobe SS, Kitchener AC, Gill P, Linacre A (2012) The development and validation of a single SNaPshot multiplex for tiger species and subspecies identification—implications for forensic purposes. Forensic Sci Int Genet 6:250–7

    Article  CAS  PubMed  Google Scholar 

  111. Dario P, Oliveira A, Ribeiro T et al (2015) SNPforID 52-plex in casework samples: “cracking” bones and other difficult samples. Forensic Sci Int Genet Suppl Ser 5:e118–e20

    Article  Google Scholar 

  112. Fondevila M, Phillips C, Naveran N et al (2008) Case report: identification of skeletal remains using short-amplicon marker analysis of severely degraded DNA extracted from a decomposed and charred femur. Forensic Sci Int Genet 2:212–8

    Article  CAS  PubMed  Google Scholar 

  113. Phillips C, Fondevila M, García-Magariños M et al (2008) Resolving relationship tests that show ambiguous STR results using autosomal SNPs as supplementary markers. Forensic Sci Int Genet 2:198–204

    Article  CAS  PubMed  Google Scholar 

  114. Pontes ML, Medeiros R (2015) Autosomal SNPs in different forensic applications. Aust J Forensic Sci 48:1–9

    Google Scholar 

  115. Phillips C (2015) Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet 18:49–65

    Article  CAS  PubMed  Google Scholar 

  116. Pulker H, Lareu MV, Phillips C, Carracedo A (2007) Finding genes that underlie physical traits of forensic interest using genetic tools. Forensic Sci Int Genet 1:100–4

    Article  PubMed  Google Scholar 

  117. Butler K, Peck M, Hart J, Schanfield M, Podini D (2011) Molecular “eyewitness”: forensic prediction of phenotype and ancestry. Forensic Sci Int Genet Suppl Ser 3:e498–e9

    Article  Google Scholar 

  118. Titia Sijen NECW, Baca K, Ballard D, Balsa F, Bogus M, Borsting C, Brisighelli F, Cervenákova J, Chaitanya L, Decroyer V, Desmyter S, van der Gaag K, Gettings K, Haas C, Heinrich J, João Anjos M, Kal A, Kiesler K, Kúdelová A, Mosquera A, Noel F, Parson W, Pereira V, Phillips C, Schneider PM, Syndercombe-Court D, Turanska M, Vidaki A, Woliński P, Zatkalíková L (2016) A collaborative EDNAP exercise on the use of a SNaPshot™ tool for typing the mtDNA control region

    Google Scholar 

  119. McShane J (2011) The Night Stalker—the true story of Delroy Grant, Britain’s most shocking serial sex attacker. Kindle Edition ed. John Blake

  120. Patricia Ortega Dolz, Barroso FJ. Madrid teen’s suspected murderer arrested in France 18 years after crime. ELPAIS

  121. Severini S, Carnevali E, Margiotta G, Garcia-González M, Carracedo Á (2015) Use of ancestry-informative markers as a scientific tool to combat the illegal traffic in human kidneys. Forensic Sci Int Genet Suppl Ser 5:e302–e4

    Article  Google Scholar 

  122. Santos C, Fondevila M, Ballard D et al (2015) Forensic ancestry analysis with two capillary electrophoresis ancestry informative marker (AIM) panels: results of a collaborative EDNAP exercise. Forensic Sci Int Genet 19:56–67

    Article  CAS  PubMed  Google Scholar 

  123. Walsh S, Chaitanya L, Clarisse L et al (2014) Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci Int Genet 9:150–61

    Article  CAS  PubMed  Google Scholar 

  124. Hillmer AM, Brockschmidt FF, Hanneken S et al (2008) Susceptibility variants for male-pattern baldness on chromosome 20p11. Nat Genet 40:1279–81. doi:10.1038/ng.228

    Article  CAS  PubMed  Google Scholar 

  125. Medland SE, Nyholt DR, Painter JN et al (2009) Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am J Hum Genet 85:750–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fagertun J, Wolffhechel K, Pers TH et al (2015) Predicting facial characteristics from complex polygenic variations. Forensic Sci Int Genet 19:263–8

    Article  PubMed  Google Scholar 

  127. Ho YY, Evans DM, Montgomery GW et al (2015) Genetic variant influence on whorls in fingerprint patterns. J Investig Dermatol

  128. Bekaert B, Kamalandua A, Zapico S, Van de Voorde W, Decorte R (2015) A selective set of DNA-methylation markers for age determination of blood, teeth and buccal samples. Forensic Science International: Genetics Supplement Series

  129. Phillips C, Parson W, Lundsberg B et al (2014) Building a forensic ancestry panel from the ground up: the EUROFORGEN Global AIM-SNP set. Forensic Sci Int Genet 11:13–25

    Article  CAS  PubMed  Google Scholar 

  130. Mehta B, Daniel R, Phillips C, Doyle S, Elvidge G, McNevin D (2016) Massively parallel sequencing of customised forensically informative SNP panels on the MiSeq. Electrophoresis

  131. Churchill JD, Schmedes SE, King JL, Budowle B (2016) Evaluation of the Illumina® Beta Version ForenSeq™ DNA Signature Prep Kit for use in genetic profiling. Forensic Sci Int Genet 20:20–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding from the Australian Research Council (Linkage Project 110100121: ‘From genotype to phenotype: molecular photofitting for criminal investigations’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavik Mehta.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, B., Daniel, R., Phillips, C. et al. Forensically relevant SNaPshot® assays for human DNA SNP analysis: a review. Int J Legal Med 131, 21–37 (2017). https://doi.org/10.1007/s00414-016-1490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1490-5

Keywords

Navigation