Skip to main content
Log in

Direct-to-PCR tissue preservation for DNA profiling

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Disaster victim identification (DVI) often occurs in remote locations with extremes of temperatures and humidities. Access to mortuary facilities and refrigeration are not always available. An effective and robust DNA sampling and preservation procedure would increase the probability of successful DNA profiling and allow faster repatriation of bodies and body parts. If the act of tissue preservation also released DNA into solution, ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. In this study, we explored the possibility of obtaining DNA profiles without DNA extraction, by adding aliquots of preservative solutions surrounding fresh human muscle and decomposing human muscle and skin tissue samples directly to PCR. The preservatives consisted of two custom preparations and two proprietary solutions. The custom preparations were a salt-saturated solution of dimethyl sulfoxide (DMSO) with ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The proprietary preservatives were DNAgard (Biomatrica®) and Tissue Stabilising Kit (DNA Genotek). We obtained full PowerPlex® 21 (Promega) and GlobalFiler® (Life Technologies) DNA profiles from fresh and decomposed tissue preserved at 35 °C for up to 28 days for all four preservatives. The preservative aliquots removed from the fresh muscle tissue samples had been stored at −80 °C for 4 years, indicating that long-term archival does not diminish the probability of successful DNA typing. Rather, storage at −80 °C seems to reduce PCR inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161(6):1961–1971. doi:10.1016/S0002-9440(10)64472-0

    Article  CAS  Google Scholar 

  2. Gillespie JW, Best CJ, Bichsel VE, Cole KA, Greenhut SF, Hewitt SM, Ahram M, Gathright YB, Merino MJ, Strausberg RL, Epstein JI, Hamilton SR, Gannot G, Baibakova GV, Calvert VS, Flaig MJ, Chuaqui RF, Herring JC, Pfeifer J, Petricoin EF, Linehan WM, Duray PH, Bova GS, Emmert-Buck MR (2002) Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol 160(2):449–457. doi:10.1016/S0002-9440(10)64864-X

    Article  CAS  Google Scholar 

  3. Dubeau L, Chandler LA, Gralow JR, Nichols PW, Jones PA (1986) Southern blot analysis of DNA extracted from formalin-fixed pathology specimens. Cancer Res 46(6):2964–2969

    CAS  PubMed  Google Scholar 

  4. INTERPOL (2009) Disaster victim identification guide. INTERPOL, Lyon

    Google Scholar 

  5. Prinz M, Carracedo A, Mayr WR, Morling N, Parsons TJ, Sajantila A, Scheithauer R, Schmitter H, Schneider PM (2007) DNA Commission of the International Society for Forensic Genetics (ISFG): recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int Genet Suppl Ser 1(1):3–12. doi:10.1016/j.fsigen.2006.10.003

    Article  CAS  Google Scholar 

  6. Farrugia A, Keyser C, Ludes B (2010) Efficiency evaluation of a DNA extraction and purification protocol on archival formalin-fixed and paraffin-embedded tissue. Forensic Sci Int 194(1–3):e25–e28. doi:10.1016/j.forsciint.2009.09.004

    Article  CAS  Google Scholar 

  7. Shi S-R, Cote RJ, Wu L, Liu C, Datar R, Shi Y, Liu D, Lim H, Taylor CR (2002) DNA extraction from archival formalin-fixed, paraffin-embedded tissue sections based on the antigen retrieval principle: heating under the influence of pH. J Histochem Cytochem 50(8):1005–1011. doi:10.1177/002215540205000802

    Article  CAS  Google Scholar 

  8. Allen-Hall A, McNevin D (2013) Non-cryogenic forensic tissue preservation in the field: a review. Aust J Forensic Sci 45(4):450–460. doi:10.1080/00450618.2013.789077

    Article  Google Scholar 

  9. Allen-Hall A, McNevin D (2012) Human tissue preservation for disaster victim identification (DVI) in tropical climates. Forensic Sci Int Genet 6(5):653–657. doi:10.1016/j.fsigen.2011.12.005

    Article  CAS  Google Scholar 

  10. Mercier B, Gaucher C, Feugeas O, Mazurier C (1990) Direct PCR from whole blood, without DNA extraction. Nucleic Acids Res 18(19):5908

    Article  CAS  Google Scholar 

  11. Gray K, Crowle D, Scott P (2014) Direct amplification of casework bloodstains using the promega PowerPlex® 21 PCR Amplification System. Forensic Sci Int Genet 12:86–92. doi:10.1016/j.fsigen.2014.05.003

    Article  CAS  Google Scholar 

  12. Ottens R, Taylor D, Abarno D, Linacre A (2013) Successful direct amplification of nuclear markers from a single hair follicle. Forensic Sci Med Pathol 9(2):238–243. doi:10.1007/s12024-012-9402-6

    Article  CAS  Google Scholar 

  13. Ottens R, Taylor D, Abarno D, Linacre A (2013) Optimising direct PCR from anagen hair samples. Forensic Sci Int Genet Suppl Ser 4(1):e109–e110. doi:10.1016/j.fsigss.2013.10.056

    Article  Google Scholar 

  14. Ottens R, Taylor D, Linacre A (2014) DNA profiles from fingernails using direct PCR. Forensic Sci Med Pathol. doi:10.1007/s12024-014-9626-8:1-5

  15. Linacre A, Pekarek V, Swaran YC, Tobe SS (2010) Generation of DNA profiles from fabrics without DNA extraction. Forensic Sci Int Genet 4(2):137–141. doi:10.1016/j.fsigen.2009.07.006

    Article  CAS  Google Scholar 

  16. Ottens R, Templeton J, Paradiso V, Taylor D, Abarno D, Linacre A (2013) Application of direct PCR in forensic casework. Forensic Sci Int Genet Suppl Ser 4(1):e47–e48. doi:10.1016/j.fsigss.2013.10.024

    Article  Google Scholar 

  17. Templeton J, Ottens R, Paradiso V, Handt O, Taylor D, Linacre A (2013) Genetic profiling from challenging samples: direct PCR of touch DNA. Forensic Sci Int Genet Suppl Ser 4(1):e224–e225. doi:10.1016/j.fsigss.2013.10.115

    Article  Google Scholar 

  18. Quinones I, Daniel B (2012) Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Genet 6(1):26–30. doi:10.1016/j.fsigen.2011.01.004

    Article  CAS  Google Scholar 

  19. Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D (2013) Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int Genet 7(2):316–320. doi:10.1016/j.fsigen.2012.12.005

    Article  CAS  Google Scholar 

  20. Wang DY, Chang C-W, Lagacé RE, Oldroyd NJ, Hennessy LK (2011) Development and validation of the AmpFℓSTR® Identifiler® Direct PCR Amplification Kit: a multiplex assay for the direct amplification of single-source samples. J Forensic Sci 56(4):835–845. doi:10.1111/j.1556-4029.2011.01757.x

    Article  CAS  Google Scholar 

  21. Weispfenning R, Oostdik K, Ensenberger M, Krenke B, Sprecher C, Storts D (2011) Doing more with less: implementing direct amplification with the PowerPlex® 18D System. Forensic Sci Int Genet Suppl Ser 3(1):e409–e410. doi:10.1016/j.fsigss.2011.09.066

    Article  Google Scholar 

  22. Stene M, Buchard A, Børsting C, Morling N (2011) Validation of the AmpFlSTR® Identifiler® Direct PCR Amplification kit in a laboratory accredited according to the ISO17025 standard. Forensic Sci Int Genet Suppl Ser 3(1):e165–e166. doi:10.1016/j.fsigss.2011.08.083

    Article  Google Scholar 

  23. Vallone PM, Hill CR, Butts ELR (2011) Concordance study of direct PCR kits: PowerPlex 18D and Identifiler Direct. Forensic Sci Int Genet Suppl Ser 3(1):e353–e354. doi:10.1016/j.fsigss.2011.09.039

    Article  Google Scholar 

  24. Myers BA, King JL, Budowle B (2012) Evaluation and comparative analysis of direct amplification of STRs using PowerPlex® 18D and Identifiler® Direct systems. Forensic Sci Int Genet 6(5):640–645. doi:10.1016/j.fsigen.2012.02.005

    Article  CAS  Google Scholar 

  25. Henegariu O, Heerema N, Dlouhy S, Vance G, Vogt P (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23(3):504–511

    Article  CAS  Google Scholar 

  26. Al-Soud WA, Rådström P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39(2):485–493. doi:10.1128/JCM.39.2.485-493.2001

    Article  CAS  Google Scholar 

  27. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 39:362–362

    Article  CAS  Google Scholar 

  28. Opel KL, Chung D, McCord BR (2010) A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55(1):25–33. doi:10.1111/j.1556-4029.2009.01245.x

    Article  CAS  Google Scholar 

  29. Seo SB, Jin HX, Lee HY, Ge J, King JL, Lyoo SH, Shin DH, Lee SD (2013) Improvement of short tandem repeat analysis of samples highly contaminated by humic acid. J Forensic Legal Med 20(7):922–928. doi:10.1016/j.jflm.2013.08.001

    Article  Google Scholar 

  30. Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62(3):1102–1106

    Article  CAS  Google Scholar 

  31. Montelius K, Lindblom B (2012) DNA analysis in disaster victim identification. Forensic Sci Med Pathol 8(2):140–147. doi:10.1007/s12024-011-9276-z

    Article  CAS  Google Scholar 

  32. Applied Biosystems (2014) Quantifiler®Human and Y Human Male DNA Quantification Kits: user guide. Life Technologies, Carlsbad, CA

  33. Berry CM (2014) The use of a direct to PCR analysis method for disaster victim identification. Honours Thesis, University of Canberra, Canberra

  34. Promega (2012) PowerPlex 21 System: technical manual. Promega Corporation, Madison, WI

    Google Scholar 

  35. Life Technologies (2014) GlobalFiler® PCR Amplification Kit User Guide. ThermoFisher Scientific, Carlsbad, CA

  36. Swaran YC, Welch L (2012) A comparison between direct PCR and extraction to generate DNA profiles from samples retrieved from various substrates. Forensic Sci Int Genet 6(3):407–412. doi:10.1016/j.fsigen.2011.08.007

    Article  CAS  Google Scholar 

  37. Sayan M, Meriç M, Celebi S, Willke A (2009) Elimination of PCR inhibitors in routine diagnostic real-time PCR assay and results of internal amplification control. Mikrobiyoloji Bulteni 43(1):179–181

    CAS  PubMed  Google Scholar 

  38. Toye B, Woods W, Bobrowska M, Ramotar K (1998) Inhibition of PCR in genital and urine specimens submitted for Chlamydia trachomatis testing. J Clin Microbiol 36(8):2356–2358

    Article  CAS  Google Scholar 

  39. Mahony J, Chong S, Jang D, Luinstra K, Faught M, Dalby D, Sellors J, Chernesky M (1998) Urine specimens from pregnant and nonpregnant women inhibitory to amplification of Chlamydia trachomatis nucleic acid by PCR, ligase chain reaction and transcription-mediated amplification: identification of urinary substances associated with inhibition and removal of inhibitory activity. J Clin Microbiol 36(11):3122–3126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Some equipment and consumables were provided by the NSW Forensic and Analytical Science Service (Sydney, Australia). The authors thank Dr Heloise Breton for providing valuable feedback on the manuscript; the staff at STAFS (Sam Houston State University, Huntsville, TX, USA) for their assistance and the individuals and families of those who donated their bodies to STAFS for scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis McNevin.

Ethics declarations

Approval for collection and use of human tissue samples was granted by the University of Canberra Human Research Ethics Committee (Project number 09-01with extension 14-71). All samples were collected with the informed consent of the donors. For the decomposed samples used in this study, Code 45 of US Federal Regulations part 46102(f) exempts the requirement for Institutional Review Board (IRB) approval regarding the use of human cadaveric samples. All procedures were in accordance with the 1964 Helsinki Declaration and its later amendments.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorensen, A., Berry, C., Bruce, D. et al. Direct-to-PCR tissue preservation for DNA profiling. Int J Legal Med 130, 607–613 (2016). https://doi.org/10.1007/s00414-015-1286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1286-z

Keywords

Navigation