Skip to main content

Advertisement

Log in

Detection of endothelial progenitor cells in human skin wounds and its application for wound age determination

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Endothelial progenitor cells (EPCs), a newly identified cell type, are bone marrow-derived progenitor cells that co-express stem cell markers and vascular endothelial growth factor (VEGF) receptor (Flk-1). In this study, a double-color immunofluorescence analysis was carried out using anti-CD34 and anti-Flk-1 antibodies to examine the time-dependent appearance of EPCs, using 52 human skin wounds with different wound ages (Group I, 0–1 days; Group II, 2–6 days; Group III, 7–14 days; and Group IV, 17–21 days). In wound specimens with an age of less than one day, CD34+/Flk-1+ EPCs were not detected. EPCs were initially observed in wounds aged two days, and their number was increased in lesions with advances in wound age. In morphometrical analysis, the average number of EPCs was the highest in the wounds of Group III. Especially, 20 out of 21 wounds aged 7–12 days had >20 EPCs, and all wound samples with postinfliction intervals of 14–21 days had <15 EPCs. These observations at least showed that >20 EPCs would indicate a wound age of 7–12 days. Taken together, our observations indicate the detection of EPCs would be useful for wound age determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ohshima T (2000) Forensic wound examination. Forensic Sci Int 113:153–164

    Article  CAS  PubMed  Google Scholar 

  2. Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203:93–98

    Article  CAS  PubMed  Google Scholar 

  3. Gauchotte G, Wissler MP, Casse JM, Pujo J, Minetti C, Gisquet H, Vigouroux C, Plenat F, Vignaud JM, Martrille L (2013) FVIIIra, CD15, and tryptase performance in the diagnosis of skin stab wound vitality in forensic pathology. Int J Legal Med 127:957–965

    Article  PubMed  Google Scholar 

  4. Maeda H, Ishikawa T, Michiue T (2014) Forensic molecular pathology: its impacts on routine work, education and training. Leg Med (Tokyo) 16:61–69

    Article  CAS  Google Scholar 

  5. Dressler J, Hanisch U, Kuhlisch E, Geiger KD (2007) Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med 121:365–375

    Article  CAS  PubMed  Google Scholar 

  6. Betz P, Eisenmenger W (1996) Morphometrical analysis of hemosiderin deposits in relation to wound age. Int J Legal Med 108:262–264

    Article  CAS  PubMed  Google Scholar 

  7. Kondo T (2007) Timing of skin wounds. Leg Med (Tokyo) 9:109–114

    Article  Google Scholar 

  8. Oehmichen M (2004) Vitality and time course of wounds. Forensic Sci Int 144:221–231

    Article  CAS  PubMed  Google Scholar 

  9. Cecchi R (2010) Estimating wound age: looking into the future. Int J Legal Med 124:523–536

    Article  PubMed  Google Scholar 

  10. Hernández-Cueto C, Girela E, Sweet DJ (2000) Advances in the diagnosis of wound vitality: a review. Am J Forensic Med Pathol 2:21–31

    Article  Google Scholar 

  11. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  12. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  13. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2008) Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122:409–414

    Article  CAS  PubMed  Google Scholar 

  14. Chen JH, Michiue T, Ishikawa T, Maeda H (2012) Difference in molecular pathology of natriuretic peptides in the myocardium between acute asphyxial and cardiac deaths. Leg Med (Tokyo) 14:177–182

    Article  CAS  Google Scholar 

  15. Li DR, Zhang F, Wang Y, Tan XH, Qiao DF, Wang HJ, Michiue T, Maeda H (2012) Quantitative analysis of GFAP- and S100 protein-immunopositive astrocytes to investigate the severity of traumatic brain injury. Leg Med (Tokyo) 14:84–92

    Article  CAS  Google Scholar 

  16. Kubo H, Hayashi T, Ago K, Ago M, Kanekura T, Ogata M (2014) Forensic diagnosis of ante- and postmortem burn based on aquaporin-3 gene expression in the skin. Leg Med (Tokyo) 16:128–134

    Article  CAS  Google Scholar 

  17. Kubo H, Hayashi T, Ago K, Ago M, Kanekura T, Ogata M (2014) Temporal expression of wound healing-related genes in skin burn injury. Leg Med (Tokyo) 16:8–13

    Article  CAS  Google Scholar 

  18. Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236

    Article  CAS  PubMed  Google Scholar 

  19. Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1α (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112:249–252

    Article  CAS  PubMed  Google Scholar 

  20. Sakurada M, Asano M, Takahashi M, Kuse A, Morichika M, Nakagawa K, Kondo T, Ueno Y (2013) Estimates of exposure to cold before death from immunohistochemical expression patterns of HSP70 in glomerular podocytes. Int J Legal Med 127:783–790

    Article  PubMed  Google Scholar 

  21. Cecchi R, Sestili C, Prosperini G, Cecchetto G, Vicini E, Viel G, Muciaccia B (2014) Markers of mechanical asphyxia: immunohistochemical study on autoptic lung tissues. Int J Legal Med 128:117–125

    Article  CAS  PubMed  Google Scholar 

  22. Sato Y, Ohshima T (2000) The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med 113:140–145

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, Maeda H (2013) Molecular pathology of brain edema after severe burns in forensic autopsy cases with special regard to the importance of reference gene selection. Int J Legal Med 127:881–889

    Article  PubMed  Google Scholar 

  24. Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118:320–325

    Article  PubMed  Google Scholar 

  25. Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 116:87–91

    Article  CAS  PubMed  Google Scholar 

  26. Wu Y, Wang J, Scott PG, Tredget EE (2007) Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 15(Suppl 1):S18–S26

    Article  PubMed  Google Scholar 

  27. Roomans GM (2010) Tissue engineering and the use of stem/progenitor cells for airway epithelium repair. Eur Cell Mater 19:284–299

    CAS  PubMed  Google Scholar 

  28. Wu Y, Zhao RC, Tredget EE (2010) Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells 28:905–915

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Matsumoto T, Kuroda R, Mifune Y, Kawamoto A, Shoji T, Miwa M, Asahara T, Kurosaka M (2008) Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 43:434–439

    Article  CAS  PubMed  Google Scholar 

  30. Metz CN (2003) Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 60:1342–1350

    Article  CAS  PubMed  Google Scholar 

  31. Gomperts BN, Strieter RM (2007) Fibrocytes in lung disease. J Leukoc Biol 82:449–456

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171:380–389

    Article  CAS  PubMed  Google Scholar 

  33. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Legal Med 123:299–304

    Article  PubMed  Google Scholar 

  34. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  35. Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N, Kondo T (2012) Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest 122:711–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Liu ZJ, Velazquez OC (2008) Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 10:1869–1882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N (2002) Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J 16:963–974

    Article  CAS  PubMed  Google Scholar 

  38. Kondo T, Tanaka J, Ishida Y, Mori R, Takayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 116:267–272

    Article  CAS  PubMed  Google Scholar 

  39. Betz P, Nerlich A, Wilske J, Tubel J, Penning R, Eisenmenger W (1992) Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds. Int J Legal Med 105:99–103

    Article  CAS  PubMed  Google Scholar 

  40. Kondo T, Ohshima T, Sato Y, Mayama T, Eisenmenger W (2000) Immunohistochemical study on the expression of c-Fos and c-Jun in human skin wounds. Histochem J 32:509–514

    Article  CAS  PubMed  Google Scholar 

  41. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587

    Article  CAS  PubMed  Google Scholar 

  42. Inokuma D, Abe R, Fujita Y, Sasaki M, Shibaki A, Nakamura H, McMillan JR, Shimizu T, Shimizu H (2006) CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes. Stem Cells 24:2810–2816

    Article  CAS  PubMed  Google Scholar 

  43. Grieb G, Bucala R (2012) Fibrocytes in fibrotic diseases and wound healing. Adv Wound Care (New Rochelle) 1:36–40

    Article  Google Scholar 

  44. Reilkoff RA, Bucala R, Herzog EL (2011) Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol 11:427–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    Article  CAS  PubMed  Google Scholar 

  46. Xu J, Liu X, Koyama Y, Wang P, Lan T, Kim IG, Kim IH, Ma HY, Kisseleva T (2014) The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 5:167

    PubMed Central  PubMed  Google Scholar 

  47. Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B (2009) The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol 86:1111–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    Article  CAS  PubMed  Google Scholar 

  49. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    Article  CAS  PubMed  Google Scholar 

  50. Patschan D, Krupincza K, Patschan S, Zhang Z, Hamby C, Goligorsky MS (2006) Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia: modulation by ischemic preconditioning. Am J Physiol Renal Physiol 291:F176–F185

    Article  CAS  PubMed  Google Scholar 

  51. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164:1935–1947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach J, Schatteman GC (2003) CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res 40:368–377

    Article  CAS  PubMed  Google Scholar 

  53. Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101

    Article  CAS  PubMed  Google Scholar 

  54. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    Article  PubMed  Google Scholar 

  55. Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Takayasu T, Eisenmenger W, Kondo T (2012) Immunohistochemical analysis on cyclooxygenase-2 for wound age determination. Int J Legal Med 126:435–440

    Article  PubMed  Google Scholar 

  56. Dressler J, Bachmann L, Koch R, Müller E (1999) Enhanced expression of selectins in human skin wounds. Int J Legal Med 112:39–44

    CAS  PubMed  Google Scholar 

  57. Dressler J, Bachmann L, Koch R, Müller E (1999) Estimation of wound age and VCAM-1 in human skin. Int J Legal Med 112:159–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Grants-in-Aid for Scientific Research (A), Young Scientists (A), and Exploratory Research from the Ministry of Education, Science, Sports and Culture of Japan. We sincerely thank Ms. Mariko Kawaguchi for her excellent assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, Y., Kimura, A., Nosaka, M. et al. Detection of endothelial progenitor cells in human skin wounds and its application for wound age determination. Int J Legal Med 129, 1049–1054 (2015). https://doi.org/10.1007/s00414-015-1181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1181-7

Keywords

Navigation