Skip to main content

Advertisement

Log in

Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In forensic molecular pathology, quantitative real-time polymerase chain reaction (RT-qPCR) provides a rapid and sensitive method to investigate functional changes in the death process. Accurate and reliable relative RT-qPCR requires ideal amplification efficiencies of target and reference genes. However, the amplification efficiency, changing during PCR, may be overestimated by the traditional standard curve method. No single gene meets the criteria of an ideal endogenous reference. Therefore, it is necessary to select suitable reference genes for specific requirements. The present study evaluated 32 potential reference genes in the human brain of 15 forensic autopsy cases using three different statistical algorithms, geNorm, NormFinder, and BestKeeper. On RT-qPCR data analyses using a completely objective and noise-resistant algorithm (Real-time PCR Miner), 24 genes met standard efficiency criteria. Validation of their stability and suitability as reference genes using geNorm suggested IPO8 and POLR2A as the most stable ones, and NormFinder indicated that IPO8 and POP4 had the highest expression stabilities, while BestKeeper highlighted ABL1 and ELF1 as reference genes with the least overall variation. Combining these three algorithms suggested the genes IPO8, POLR2A, and PES1 as stable endogenous references in RT-qPCR analysis of human brain samples, with YWHAZ, PPIA, HPRT1, and TBP being the least stable ones. These findings are inconsistent with those of previous studies. Moreover, the relative stability of target and reference genes remains unknown. These observations suggest that suitable reference genes should be selected on the basis of specific requirements, experiment conditions, and the characteristics of target genes in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39(1):75–85

    Article  PubMed  CAS  Google Scholar 

  2. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5(2):209–219

    Article  PubMed  CAS  Google Scholar 

  3. Kim KY, Kwon Y, Bazarragchaa M, Park AJ, Bang H, Lee WB, Lee J, Lee KH, Kim BJ, Kim K (2012) A real-time PCR-based amelogenin Y allele dropout assessment model in gender typing of degraded DNA samples. Int J Leg Med. doi:10.1007/s00414-011-0663-5

  4. Maeda H, Zhu BL, Ishikawa T, Michiue T (2010) Forensic molecular pathology of violent deaths. Forensic Sci Int 203(1–3):83–92

    Article  PubMed  CAS  Google Scholar 

  5. Maeda H, Ishikawa T, Michiue T (2011) Forensic biochemistry for functional investigation of death: concept and practical application. Leg Med (Tokyo) 13(2):55–67

    Article  CAS  Google Scholar 

  6. Madea B, Saukko P, Oliva A, Musshoff F (2010) Molecular pathology in forensic medicine—introduction. Forensic Sci Int 203(1–3):3–14

    Article  PubMed  CAS  Google Scholar 

  7. Zhao D, Ishikawa T, Quan L, Li DR, Michiue T, Yoshida C, Komatu A, Chen JH, Zhu BL, Maeda H (2008) Tissue-specific differences in mRNA quantification of glucose transporter 1 and vascular endothelial growth factor with special regard to death investigations of fatal injuries. Forensic Sci Int 177(2–3):176–183

    Article  PubMed  CAS  Google Scholar 

  8. Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, Maeda H (2012) Intrapulmonary aquaporin-5 expression as a possible biomarker for discriminating smothering and choking from sudden cardiac death: a pilot study. Forensic Sci Int 220(1–3):154–157

    Article  PubMed  CAS  Google Scholar 

  9. Iino M, Nakatome M, Ogura Y, Fujimura H, Kuroki H, Inoue H, Ino Y, Fujii T, Terao T, Matoba R (2003) Real-time PCR quantitation of FE65 a beta-amyloid precursor protein-binding protein after traumatic brain injury in rats. Int J Leg Med 117(3):153–159

    Google Scholar 

  10. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582

    Article  PubMed  CAS  Google Scholar 

  11. Miyazato T, Ishikawa T, Michiue T, Maeda H (2012) Molecular pathology of pulmonary surfactants and cytokines in drowning compared with other asphyxiation and fatal hypothermia. Int J Leg Med 126(4):581–587

    Article  Google Scholar 

  12. Zhao D, Zhu BL, Ishikawa T, Quan L, Li DR, Maeda H (2006) Real-time RT-PCR quantitative assays and postmortem degradation profiles of erythropoietin, vascular endothelial growth factor and hypoxia-inducible factor 1 alpha mRNA transcripts in forensic autopsy materials. Leg Med (Tokyo) 8(2):132–136

    Article  CAS  Google Scholar 

  13. Chen JH, Michiue T, Ishikawa T, Maeda H (2012) Molecular pathology of natriuretic peptides in the myocardium with special regard to fatal intoxication, hypothermia, and hyperthermia. Int J Leg Med 126(5):747–756

    Article  Google Scholar 

  14. Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, Maeda H (2012) Molecular pathology of pulmonary edema after injury in forensic autopsy cases. Int J Leg Med. doi:10.1007/s00414-012-0758-7

  15. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  16. Wittwer C, Hahn M, Kaul K (2004) Rapid cycle real-time PCR: methods and applications: quantification. Springer, Berlin

    Book  Google Scholar 

  17. Liu W, Saint DA (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302(1):52–59

    Article  PubMed  CAS  Google Scholar 

  18. Tichopad A, Dilger M, Schwarz G, Pfaffl MW (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res 31(20):e122

    Article  PubMed  Google Scholar 

  19. Liu W, Saint DA (2002) Validation of a quantitative method for real time PCR kinetics. Biochem Biophys Res Commun 294(2):347–353

    Article  PubMed  CAS  Google Scholar 

  20. Harar RP, Kalan A, Kenyon GS (2002) Improving the reproducibility of acoustic rhinometry in the assessment of nasal function. ORL J Otorhinolaryngol Relat Spec 64(1):22–25

    Article  PubMed  CAS  Google Scholar 

  21. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  PubMed  CAS  Google Scholar 

  22. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31(14):e73

    Article  PubMed  Google Scholar 

  23. Bar T, Stahlberg A, Muszta A, Kubista M (2003) Kinetic Outlier Detection (KOD) in real-time PCR. Nucleic Acids Res 31(17):e105

    Article  PubMed  Google Scholar 

  24. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1047–1064

    Article  PubMed  CAS  Google Scholar 

  25. Marino JH, Cook P, Miller KS (2003) Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J Immunol Methods 283(1–2):291–306

    Article  PubMed  CAS  Google Scholar 

  26. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS One 2(9):e898

    Article  PubMed  Google Scholar 

  27. Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J, Overman KM, Atz ME, Myers RM, Jones EG, Watson SJ, Akil H, Bunney WE Jr (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55(4):346–352

    Article  PubMed  CAS  Google Scholar 

  28. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed  Google Scholar 

  29. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  PubMed  CAS  Google Scholar 

  30. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  PubMed  CAS  Google Scholar 

  31. Zipes DP, Wellens HJ (1998) Sudden cardiac death. Circulation 98(21):2334–2351

    Article  PubMed  CAS  Google Scholar 

  32. Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, Maeda H (2012) Quantitative immunohistochemical analysis of human brain basic fibroblast growth factor, glial fibrillary acidic protein and single-stranded DNA expressions following traumatic brain injury. Forensic Sci Int 221(1–3):142–151

    Article  PubMed  CAS  Google Scholar 

  33. Pfister C, Tatabiga MS, Roser F (2011) Selection of suitable reference genes for quantitative real-time polymerase chain reaction in human meningiomas and arachnoidea. BMC Res Notes 4:275

    Article  PubMed  Google Scholar 

  34. Coulson DT, Brockbank S, Quinn JG, Murphy S, Ravid R, Irvine GB, Johnston JA (2008) Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue. BMC Mol Biol 9:46

    Article  PubMed  Google Scholar 

  35. Koppelkamm A, Vennemann B, Fracasso T, Lutz-Bonengel S, Schmidt U, Heinrich M (2010) Validation of adequate endogenous reference genes for the normalisation of qPCR gene expression data in human post mortem tissue. Int J Leg Med 124(5):371–380

    Article  Google Scholar 

  36. Penna I, Vella S, Gigoni A, Russo C, Cancedda R, Pagano A (2011) Selection of candidate housekeeping genes for normalization in human postmortem brain samples. Int J Mol Sci 12(9):5461–5470

    Article  PubMed  CAS  Google Scholar 

  37. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27(2–3):126–139

    Article  PubMed  CAS  Google Scholar 

  38. Koppelkamm A, Vennemann B, Lutz-Bonengel S, Fracasso T, Vennemann M (2011) RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Leg Med 125(4):573–580

    Article  Google Scholar 

  39. Stan AD, Ghose S, Gao XM, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, Tamminga CA (2006) Human postmortem tissue: what quality markers matter? Brain Res 1123(1):1–11

    Article  PubMed  CAS  Google Scholar 

  40. Gibson UE, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Genome Res 6(10):995–1001

    Article  PubMed  CAS  Google Scholar 

  41. Arikawa E, Yang J (2007) Comparing algorithms for calculating amplification efficiencies of real-time PCR. Cambridge Healthtech Institute’s Third Annual Quantitative PCR, Microarrays, and Biological Validation: Capturing the Complete Biological Story, Providence

  42. Graeber K, Linkies A, Wood AT, Leubner-Metzger G (2011) A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell 23(6):2045–2063

    Article  PubMed  CAS  Google Scholar 

  43. Maroufi A, Van Bockstaele E, De Loose M (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15

    Article  PubMed  Google Scholar 

  44. Condori J, Nopo-Olazabal C, Medrano G, Medina-Bolivar F (2011) Selection of reference genes for qPCR in hairy root cultures of peanut. BMC Res Notes 4:392

    Article  PubMed  CAS  Google Scholar 

  45. Scharlaken B, de Graaf DC, Goossens K, Brunain M, Peelman LJ, Jacobs FJ (2008) Reference gene selection for insect expression studies using quantitative real-time PCR: the head of the honeybee, Apis mellifera, after a bacterial challenge. J Insect Sci 8:33

    Article  Google Scholar 

  46. Weickert CS, Sheedy D, Rothmond DA, Dedova I, Fung S, Garrick T, Wong J, Harding AJ, Sivagnanansundaram S, Hunt C, Duncan C, Sundqvist N, Tsai SY, Anand J, Draganic D, Harper C (2010) Selection of reference gene expression in a schizophrenia brain cohort. Aust N Z J Psychiatry 44(1):59–70

    Article  PubMed  Google Scholar 

  47. Tunbridge EM, Eastwood SL, Harrison PJ (2011) Changed relative to what? Housekeeping genes and normalization strategies in human brain gene expression studies. Biol Psychiatry 69(2):173–179

    Article  PubMed  CAS  Google Scholar 

  48. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, Penning LC, Toegel S (2010) MIQE precis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74

    Article  PubMed  Google Scholar 

  49. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science, and Technology, Japan (grant no. 22590642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Introduction of candidate reference genes (n = 32). “_s” suffix indicates the assay’s primers and probes are designed within a single exon and will detect genomic DNA. “_m” indicates the assay’s probe spans an exon junction and will not detect genomic DNA. “_g” indicates the assay may detect genomic DNA. The “context sequence” is the nucleotide sequence surrounding the region to which the probe binds. Primer and probe sequences for TaqMan assays are not available. Detailed information for each TaqMan Assay is available from Applied Biosystems. (PPT 121 kb)

Supplementary Material 2

Linear regression between RIN and relative non-normalized quantities of candidate reference genes. Genes with significant correlations with RIN are shown in bold. RIN, RNA integrity number; R 2, coefficients of determination; b0, the intercept of the regression line with the y-axis; b1, the slope of the regression line. (PPT 114 kb)

Supplementary Material 3

Pearson correlation coefficients (R 2) between relative non-normalized quantities of each pair of candidate reference genes. (XLS 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Ishikawa, T., Michiue, T. et al. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper. Int J Legal Med 126, 943–952 (2012). https://doi.org/10.1007/s00414-012-0774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0774-7

Keywords

Navigation