Skip to main content

Advertisement

Log in

Development of SNP-based human identification system

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphisms (SNPs) appeal to the forensic DNA community because of their abundance in the human genome, low mutation rate, small amplicon size, and feasibility of high-throughput genotyping technologies. In an initial screening, we identified six SNP markers of sex determination by resequencing the amelogenin genes and the zinc finger protein genes located on the sex chromosomes. Furthermore, for use in human identification, we selected 30 highly polymorphic autosomal SNP markers from among a human population and examined the potential utility of these SNP markers for human identification. The combined mean match probability of 30 SNP markers was 4.83 × 10−13. Using genotyping data from 8,842 unrelated Korean individuals, we also found that discrimination power increased 10-fold for the addition of every five SNP markers in human identification. In this study, we demonstrated that SNP markers are very useful for sex determination and human identification, even in a very homogeneous population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Urquhart A, Kimpton CP, Downes TJ, Gill P (1994) Variation in short tandem repeat sequences—a survey of twelve microsatellite loci for use as forensic identification markers. Int J Legal Med 107:13–20

    Article  CAS  PubMed  Google Scholar 

  2. Phillips C, Salas A, Sanchez JJ, Fondevila M, Gomez-Tato A, Alvarez-Dios J, Calaza M, Casares de Cal M, Ballard D, Lareu MV, Carracedo A, The SNPforID Consortium (2007) Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet 1:273–280

    Article  CAS  PubMed  Google Scholar 

  3. Børsting C, Sanchez JJ, Hansen HE, Hansen AJ, Bruun HQ, Morling N (2008) Performance of the SNPforID 52 SNP-plex assay in paternity testing. Forensic Sci Int Genet 2:292–300

    Article  PubMed  Google Scholar 

  4. Dupuy BM, Stenersen M, Egeland T, Olaisen B (2004) Y-chromosomal microsatellite mutation rates: differences in mutation rate between and within loci. Hum Mutat 23:117–124

    Article  CAS  PubMed  Google Scholar 

  5. Huang QY, Xu FH, Shen H, Deng HY, Liu YJ, Liu YZ et al (2002) Mutation patterns at dinucleotide microsatellite loci in humans. Am J Hum Genet 70:625–634

    Article  CAS  PubMed  Google Scholar 

  6. Reich DE, Schaffner SF, Daly MJ, McVean G, Mullikin JC, Higgins JM et al (2002) Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet 32:135–142

    Article  CAS  PubMed  Google Scholar 

  7. Dixon LA, Murray CM, Archer EJ, Dobbins AE, Koumi P, Gill P (2005) Validation of a 21-locus autosomal SNP multiplex for forensic identification purposes. Forensic Sci Int 154:62–77

    Article  CAS  PubMed  Google Scholar 

  8. Kohnemann S, Sibbing U, Pfeiffer H, Hohoff C (2008) A rapid mtDNA assay of 22 SNPs in one multiplex reaction increases the power of forensic testing in European Caucasians. Int J Legal Med 122:517–523

    Article  CAS  PubMed  Google Scholar 

  9. Inagaki S, Yamamoto Y, Doi Y, Takata T, Ishikawa T, Imabayashi K et al (2004) A new 39-plex analysis method for SNPs including 15 blood group loci. Forensic Sci Int 144:45–57

    Article  CAS  PubMed  Google Scholar 

  10. Lee HY, Park MJ, Yoo JE, Chung U, Han GR, Shin KJ (2005) Selection of twenty-four highly informative SNP markers for human identification and paternity analysis in Koreans. Forensic Sci Int 148:107–112

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Li CT, Li RY, Liu Y, Lin Y, Que TZ et al (2006) SNP genotyping by multiplex amplification and microarrays assay for forensic application. Forensic Sci Int 162:74–79

    Article  CAS  PubMed  Google Scholar 

  12. Pakstis AJ, Speed WC, Kidd JR, Kidd KK (2007) Candidate SNPs for a universal individual identification panel. Hum Genet 121:305–317

    Article  PubMed  Google Scholar 

  13. Sanchez JJ, Phillips C, Børsting C, Balogh K, Bogus M, Fondevila M et al (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27:1713–1724

    Article  CAS  PubMed  Google Scholar 

  14. Amigo J, Phillips C, Lareu M, Carracedo A (2008) The SNPforID browser: an online tool for query and display of frequency data from the SNPforID project. Int J Legal Med 122:435–440

    Article  PubMed  Google Scholar 

  15. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Garcia EW, Lebruska LL, Larent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  CAS  PubMed  Google Scholar 

  16. Kidd KK, Pakstis AJ, Speed WC, Grigorenko EL, Kajuna SL, Karoma NJ et al (2006) Developing a SNP panel for forensic identification of individuals. Forensic Sci Int 164:20–32

    Article  CAS  PubMed  Google Scholar 

  17. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41:527–534

    Article  CAS  PubMed  Google Scholar 

  18. Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    Google Scholar 

  19. Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25:2745–2751

    Article  CAS  PubMed  Google Scholar 

  20. Durkin AS, Cedrone E, Sykes G, Boles D, Reid YA (2000) Utility of gender determination in cell line identity. In Vitro Cell Dev Biol Anim 36:344–347

    Article  CAS  PubMed  Google Scholar 

  21. Demichelis F, Greulich H, Macoska JA, Beroukhim R, Sellers WR, Garraway L et al (2008) SNP panel identification assay (SPIA): a genetic-based assay for the identification of cell lines. Nucleic Acids Res 36:2446–2456

    Article  CAS  PubMed  Google Scholar 

  22. Tschentscher F, Frey UH, Bajanowski T (2008) Amelogenin sex determination by pyrosequencing of short PCR products. Int J Legal Med 122:333–335

    Article  PubMed  Google Scholar 

  23. Shadrach B, Commane M, Hren C, Warshawsky I (2004) A rare mutation in the primer binding region of the amelogenin gene can interfere with gender identification. J Mol Diagnostics 6:401–405

    CAS  Google Scholar 

  24. Chong SS, Kristjansson K, Cota J, Handyside AH, Hughes MR (1993) Preimplantation prevention of X-linked disease: reliable and rapid sex determination of single human cells by restriction analysis of simultaneously amplified ZFX and ZFY sequences. Hum Mol Genet 2:1187–1191

    Article  CAS  PubMed  Google Scholar 

  25. Bouakaze C, Keyser C, Crubezy E, Montagnon D, Ludes B (2009) Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis. Int J Legal Med 123:315–325

    Article  PubMed  Google Scholar 

  26. Hong SB, Kim KS, Hwang JH, Kim SH, Lim SK, Lee DS et al (2006) Genetic population data on 15 autosomal STR (PowerPlex 16) loci for forensic DNA profiling in Korean. Kor J Forensic Sci 7:1–4

    Google Scholar 

  27. Sobrino B, Brion M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korea Centers for Disease Control (2008-S6-E-001) and a grant from the Ministry of Health and Welfare, Republic of Korea (01-PJ10-PG6-01GN15-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Keuk Lee.

Additional information

Jae-Jung Kim and Bok-Ghee Han contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Validation of 30 SNP markers in 960 individuals using the Illumina VeraCode GoldenGate assay (DOC 61 kb)

Supplementary Table 2

Validation of 30 highly polymorphic SNP markers in 8,842 unrelated Korean individuals (DOC 61 kb)

Supplementary Fig. 1

Identification of sex determining SNPs within the amelogenin genes. Highly homologous regions of the amelogenin genes (AMEL-X and AMEL-Y) were resequenced in female (n = 12) and male (n = 12) DNA samples to identify sex-determining SNPs. Three candidate sex-determining SNP sites (i.e., AMEL-1, AMEL-2, and AMEL-3) were identified (GIF 3 kb)

High resolution image (TIFF 3,140 kb)

Supplementary Fig. 2

Identification of SNPs in genes encoding zinc finger proteins, for use in sex determination. Highly homologous regions of genes encoding zinc finger proteins (ZFX and ZFY) were resequenced in female (n = 12) and male (n = 12) DNA samples to identify sex-determining SNPs. Three candidate sex-determining SNP sites (i.e., ZF-1, ZF-2 and ZF-3) were identified (GIF 3 kb)

High resolution image (TIFF 3141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JJ., Han, BG., Lee, HI. et al. Development of SNP-based human identification system. Int J Legal Med 124, 125–131 (2010). https://doi.org/10.1007/s00414-009-0389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-009-0389-9

Keywords

Navigation