Skip to main content
Log in

Pch2TRIP13: controlling cell division through regulation of HORMA domains

Chromosoma Aims and scope Submit manuscript

Abstract

During meiotic and mitotic cell divisions, numerous chromosomal processes are essential for the faithful transmission of the genetic material. Pch2TRIP13, a generally conserved member of the AAA+ ATPase (AAA+ATPases associated with diverse cellular activities) family of ATPases, is rapidly emerging as a key regulator of specific chromosomal events. During the meiotic program, it is involved in controlling G2/prophase processes such as DNA break formation and recombination, checkpoint signaling, and chromosome synapsis. Excitingly, recent work has also implicated a role for Pch2TRIP13 in wiring of the checkpoint that guards the metaphase-to-anaphase transition. For several of these functions, the Hop1, Rev7, and Mad2 (HORMA) domain-containing proteins Hop1HORMAD, Mad2, and p31COMET are important downstream clients or cofactors of Pch2TRIP13. Here, I will discuss our current understanding of the function of Pch2TRIP13 during meiotic and mitotic cell divisions, with a focus on its enzymatic role towards HORMA domain-containing clients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23:284–286

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R et al (2014) TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer. Nature Commun 5:4527

    CAS  Google Scholar 

  • Bell SP, Kaguni JM (2013) Helicase loading at chromosomal origins of replication. Cold Spring Harbor Perspect Biol 5

  • Bhalla N, Dernburg AF (2005) A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science 310:1683–1686

    Article  CAS  PubMed  Google Scholar 

  • Borner GV, Barot A, Kleckner N (2008) Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. Proc Natl Acad Sci U S A 105:3327–3332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carballo JA, Johnson AL, Sedgwick SG, Cha RS (2008) Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132:758–770

    Article  CAS  PubMed  Google Scholar 

  • Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Barford D (2014) Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Curr Opin Struct Biol 29:1–9

    Article  CAS  PubMed  Google Scholar 

  • Chao WC, Kulkarni K, Zhang Z, Kong EH, Barford D (2012) Structure of the mitotic checkpoint complex. Nature 484:208–213

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Jomaa A, Ortega J, Alani EE (2014) Pch2 is a hexameric ring ATPase that remodels the chromosome axis protein Hop1. Proc Natl Acad Sci U S A 111:E44–E53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Antoni A et al (2005) The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15:214–225

    Article  PubMed  Google Scholar 

  • Eytan E et al (2014) Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc Natl Acad Sci U S A 111:12019–12024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519–529

    Article  CAS  PubMed  Google Scholar 

  • Ho HC, Burgess SM (2011) Pch2 acts through Xrs2 and Tel1/ATM to modulate interhomolog bias and checkpoint function during meiosis. PLoS Genet 7:e1002351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollingsworth NM, Goetsch L, Byers B (1990) The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61:73–84

    Article  CAS  PubMed  Google Scholar 

  • Humphryes N, Hochwagen A (2014) A non-sister act: recombination template choice during meiosis. Exp Cell Res 329:53–60

    Article  CAS  PubMed  Google Scholar 

  • Jao CC, Ragusa MJ, Stanley RE, Hurley JH (2013) A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc Natl Acad Sci U S A 110:5486–5491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi N, Barot A, Jamison C, Borner GV (2009) Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLoS Genet 5:e1000557

    Article  PubMed Central  PubMed  Google Scholar 

  • Joshi N, Brown MS, Bishop DK, Borner GV (2015) Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels. Mol Cell 57:797–811

    Article  CAS  PubMed  Google Scholar 

  • Joyce EF, McKim KS (2009) Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation. Genetics 181:39–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Joyce EF, McKim KS (2010) Chromosome axis defects induce a checkpoint-mediated delay and interchromosomal effect on crossing over during Drosophila meiosis. PLoS Genet 6

  • Kang JU, Koo SH, Kwon KC, Park JW, Kim JM (2008) Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet Cytogenet 182:1–11

    Article  CAS  PubMed  Google Scholar 

  • Keeney S, Neale MJ (2006) Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 34:523–525

    Article  CAS  PubMed  Google Scholar 

  • Kim Y et al (2014) The chromosome axis controls meiotic events through a hierarchical assembly of HORMA domain proteins. Dev Cell 31:487–502

    Article  CAS  PubMed  Google Scholar 

  • Larkin SE et al (2012) Identification of markers of prostate cancer progression using candidate gene expression. Br J Cancer 106:157–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XC, Schimenti JC (2007) Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet 3:e130

    Article  PubMed Central  PubMed  Google Scholar 

  • Lo YH, Chuang CN, Wang TF (2014) Pch2 prevents Mec1/Tel1-mediated Hop1 phosphorylation occurring independently of Red1 in budding yeast meiosis. PLoS ONE 9:e85687

    Article  PubMed Central  PubMed  Google Scholar 

  • London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15:736–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mao-Draayer Y, Galbraith AM, Pittman DL, Cool M, Malone RE (1996) Analysis of meiotic recombination pathways in the yeast Saccharomyces cerevisiae. Genetics 144:71–86

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mapelli M, Massimiliano L, Santaguida S, Musacchio A (2007) The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131:730–743

    Article  CAS  PubMed  Google Scholar 

  • Mapelli M, Musacchio A (2007) MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr Opin Struct Biol 17:716–725

    Article  CAS  PubMed  Google Scholar 

  • Meyer H, Weihl CC (2014) The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci 127:3877–3883

    Article  CAS  PubMed  Google Scholar 

  • Miao C et al (2013) Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell 25:2998–3009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    Article  CAS  PubMed  Google Scholar 

  • Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, Klein F (2011) Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146:372–383

    Article  CAS  PubMed  Google Scholar 

  • Petronczki M, Siomos MF, Nasmyth K (2003) Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112:423–440

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Xu X, Niklason LE (2015) PCH-2 regulates Caenorhabditis elegans lifespan. Aging 7:1–13

    PubMed Central  PubMed  Google Scholar 

  • Roig I, Dowdle JA, Toth A, de Rooij DG, Jasin M, Keeney S (2010) Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet 6

  • San-Segundo PA, Roeder GS (1999) Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97:313–324

    Article  CAS  PubMed  Google Scholar 

  • Subramanian VV, Hochwagen A (2014) The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 6:a016675

    Article  PubMed  Google Scholar 

  • Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154:925–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Symington LS (2014) End resection at double-strand breaks: mechanism and regulation. Cold Spring Harbor Perspect Biol 6

  • Teichner A, Eytan E, Sitry-Shevah D, Miniowitz-Shemtov S, Dumin E, Gromis J, Hershko A (2011) p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proc Natl Acad Sci U S A 108:3187–3192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tipton AR, Wang K, Oladimeji P, Sufi S, Gu Z, Liu ST (2012) Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries. BMC Cell Biol 13:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vader G, Blitzblau HG, Tame MA, Falk JE, Curtin L, Hochwagen A (2011) Protection of repetitive DNA borders from self-induced meiotic instability. Nature 477:115–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang K, Sturt-Gillespie B, Hittle JC, Macdonald D, Chan GK, Yen TJ, Liu ST (2014) Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein. J Biol Chem 289:23928–23937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wojtasz L et al (2009) Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet 5:e1000702

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu HY, Burgess SM (2006) Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeast. Curr Biol 16:2473–2479

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Li B, Tomchick DR, Machius M, Rizo J, Yu H, Luo X (2007) p31comet blocks Mad2 activation through structural mimicry. Cell 131:744–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zanders S, Sonntag Brown M, Chen C, Alani E (2011) Pch2 modulates chromatid partner choice during meiotic double-strand break repair in Saccharomyces cerevisiae. Genetics 188:511–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Alex Faesen, Stefano Maffini, Maria Thanasoula (MPI Dortmund, Germany), and Andreas Hochwagen (NYU, USA) for critical reading and members of the Vader and Musacchio labs for discussions. I acknowledge Jolien van Hooff (UMC Utrecht/Utrecht University, The Netherlands), Berend Snel (Utrecht University, The Netherlands), and Geert Kops (UMC Utrecht, The Netherlands) for sharing unpublished observations.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by the author.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerben Vader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vader, G. Pch2TRIP13: controlling cell division through regulation of HORMA domains. Chromosoma 124, 333–339 (2015). https://doi.org/10.1007/s00412-015-0516-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-015-0516-y

Keywords

Navigation