Skip to main content
Log in

Nucleosome positioning in yeasts: methods, maps, and mechanisms

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. While the average +1 nucleosome position relative to the TSS is conserved across yeasts, it differs in other eukaryotes. For example, the Drosophila TSSs are often upstream of the +1 nucleosome within the NDR (Mavrich et al. 2008b).

  2. Alternative nomenclatures: canonical versus noncanonical (Jiang and Pugh 2009b), open versus covered (Cairns 2009), depleted versus occupied proximal nucleosome (DPN vs. OPN; Tirosh and Barkai 2008), and much earlier in the context of Drosophila promoters: preset versus remodeling promoters (Lu et al. 1994).

  3. The comparison of nucleosome occupancy between different data sets may be problematic (see “Comparison of different methods and the problem of nucleosome occupancy”).

  4. There is the formal possibility of species-specific intrinsic sequence preferences. However, we think this unlikely given the high conservation of the histone octamer and physiological biophysical conditions.

  5. While yeast cells show constant spacing throughout the genome, human cells vary the NRL inversely with transcription rate (Valouev et al. 2011).

  6. Alternatively, “organizing centers” (Zhang et al. 2011b) or “focal points” (Yen et al. 2012).

  7. It is quite striking that one of the oldest observations in the chromatin field, regular nucleosome spacing seen in MNase ladders, is still not explained mechanistically.

References

  • Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446:572–576

    CAS  PubMed  Google Scholar 

  • Allan J, Fraser RM, Owen-Hughes T, Keszenman-Pereyra D (2012) Micrococcal nuclease does not substantially bias nucleosome mapping. J Mol Biol 417:152–164

    CAS  PubMed  Google Scholar 

  • Almer A, Hörz W (1986) Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J 5:2681–2687

    PubMed Central  CAS  PubMed  Google Scholar 

  • Almer A, Rudolph H, Hinnen A, Hörz W (1986) Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J 5:2689–2696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Angermayr M, Bandlow W (1997) The general regulatory factor Reb1p controls basal, but not Gal4p-mediated, transcription of the GCY1 gene in yeast. Mol Gen Genet 256:682–689

    CAS  PubMed  Google Scholar 

  • Axel R (1975) Cleavage of DNA in nuclei and chromatin with staphylococcal nuclease. Biochemistry 14:2921–2925

    CAS  PubMed  Google Scholar 

  • Badis G et al (2008) A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32:878–887

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bai L, Ondracka A, Cross FR (2011) Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. Mol Cell 42:465–476

    PubMed Central  CAS  PubMed  Google Scholar 

  • Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116:699–709

    CAS  PubMed  Google Scholar 

  • Becker J, Yau C, Hancock JM, Holmes CC (2013) NucleoFinder: a statistical approach for the detection of nucleosome positions. Bioinformatics (Oxford, England) 29:711–716. doi:10.1093/bioinformatics/bts719

  • Becker PB, Workman JL (2013) Nucleosome remodeling and epigenetics. Cold Spring Harbor perspectives in biology 5 doi:10.1101/cshperspect.a017905

  • Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12:554–564

    CAS  PubMed  Google Scholar 

  • Berbenetz NM, Nislow C, Brown GW (2010) Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6:e1001092

    PubMed Central  PubMed  Google Scholar 

  • Brogaard K, Xi L, Wang JP, Widom J (2012a) A map of nucleosome positions in yeast at base-pair resolution. Nature 486:496–501. doi:10.1038/nature11142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brogaard KR, Xi L, Wang JP, Widom J (2012b) A chemical approach to mapping nucleosomes at base pair resolution in yeast. Methods Enzymol 513:315–334. doi:10.1016/b978-0-12-391938-0.00014-8

    CAS  PubMed  Google Scholar 

  • Brown CR, Mao C, Falkovskaia E, Jurica MS, Boeger H (2013) Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol 11:e1001621. doi:10.1371/journal.pbio.1001621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bryant JM, Govin J, Zhang L, Donahue G, Pugh BF, Berger SL (2012) The linker histone plays a dual role during gametogenesis in Saccharomyces cerevisiae. Mol Cell Biol 32:2771–2783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buchanan L et al (2009) The Schizosaccharomyces pombe JmjC-protein, Msc1, prevents H2A.Z localization in centromeric and subtelomeric chromatin domains. PLoS Genet 5:e1000726

    PubMed Central  PubMed  Google Scholar 

  • Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461:193–198

    CAS  PubMed  Google Scholar 

  • Caserta M, Agricola E, Churcher M, Hiriart E, Verdone L, Di Mauro E, Travers A (2009) A translational signature for nucleosome positioning in vivo. Nucleic Acids Res 37:5309–5321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Celona B et al (2011) Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol 9:e1001086

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen K et al (2013) DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res 23:341–351. doi:10.1101/gr.142067.112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chereji RV, Morozov AV (2014) Ubiquitous nucleosome crowding in the yeast genome. Proc Natl Acad Sci U S A 111:5236–5241. doi:10.1073/pnas.1321001111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chung HR et al (2010) The effect of micrococcal nuclease digestion on nucleosome positioning data. PLoS ONE 5:e15754

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    CAS  PubMed  Google Scholar 

  • Cockell M, Rhodes D, Klug A (1983) Location of the primary sites of micrococcal nuclease cleavage on the nucleosome core. J Mol Biol 170:423–446

    CAS  PubMed  Google Scholar 

  • Cole HA, Howard BH, Clark DJ (2011a) Activation-induced disruption of nucleosome position clusters on the coding regions of Gcn4-dependent genes extends into neighbouring genes. Nucleic Acids Res 39:9521–9535. doi:10.1093/nar/gkr643

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cole HA, Howard BH, Clark DJ (2011b) The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere. Proc Natl Acad Sci U S A 108:12687–12692. doi:10.1073/pnas.1104978108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cole HA, Howard BH, Clark DJ (2012a) Genome-wide mapping of nucleosomes in yeast using paired-end sequencing. Methods Enzymol 513:145–168

    CAS  PubMed  Google Scholar 

  • Cole HA, Nagarajavel V, Clark DJ (2012b) Perfect and imperfect nucleosome positioning in yeast. Biochim Biophys Acta 1819:639–643. doi:10.1016/j.bbagrm.2012.01.008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cui F, Cole HA, Clark DJ, Zhurkin VB (2012) Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing. Nucleic Acids Res 40:10753–10764. doi:10.1093/nar/gks870

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davey CA, Richmond TJ (2002) DNA-dependent divalent cation binding in the nucleosome core particle. Proc Natl Acad Sci U S A 99:11169–11174

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Castro E, Soriano I, Marin L, Serrano R, Quintales L, Antequera F (2012) Nucleosomal organization of replication origins and meiotic recombination hotspots in fission yeast. EMBO J 31:124–137

    PubMed Central  PubMed  Google Scholar 

  • DeGennaro CM et al (2013) Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol 33:4779–4792. doi:10.1128/mcb. 01068-13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dingwall C, Lomonossoff GP, Laskey RA (1981) High sequence specificity of micrococcal nuclease. Nucleic Acids Res 9:2659–2673

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–1408

    CAS  PubMed  Google Scholar 

  • Drew HR, Travers AA (1985) DNA bending and its relation to nucleosome positioning. J Mol Biol 186:773–790

    CAS  PubMed  Google Scholar 

  • Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM (2010) Conserved nucleosome positioning defines replication origins. Genes Dev 24:748–753

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elfving N, Chereji RV, Bharatula V, Bjorklund S, Morozov AV, Broach JR (2014) A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 42:5468–5482. doi:10.1093/nar/gku176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elgin SC (1981) DNAase I-hypersensitive sites of chromatin. Cell 27:413–415

    CAS  PubMed  Google Scholar 

  • Engeholm M, de Jager M, Flaus A, Brenk R, van Noort J, Owen-Hughes T (2009) Nucleosomes can invade DNA territories occupied by their neighbors. Nat Struct Mol Biol 16:151–158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fascher KD, Schmitz J, Hörz W (1993) Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation. J Mol Biol 231:658–667

    CAS  PubMed  Google Scholar 

  • Field Y et al (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4:e1000216

    PubMed Central  PubMed  Google Scholar 

  • Flaus A, Luger K, Tan S, Richmond TJ (1996) Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc Natl Acad Sci U S A 93:1370–1375

    PubMed Central  CAS  PubMed  Google Scholar 

  • Floer M et al (2010) A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141:407–418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flores O, Deniz O, Soler-Lopez M, Orozco M (2014) Fuzziness and noise in nucleosomal architecture. Nucleic Acids Res. doi:10.1093/nar/gku165

    Google Scholar 

  • Flores O, Orozco M (2011) nucleR: a package for non-parametric nucleosome positioning. Bioinformatics (Oxford, England) 27:2149–2150 doi:10.1093/bioinformatics/btr345

  • Ganapathi M, Palumbo MJ, Ansari SA, He Q, Tsui K, Nislow C, Morse RH (2011) Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res 39:2032–2044. doi:10.1093/nar/gkq1161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ganguli D, Chereji RV, Iben JR, Cole HA, Clark DJ (2014) RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res. doi:10.1101/gr.177014.114

    PubMed Central  PubMed  Google Scholar 

  • Giresi PG, Lieb JD (2009) Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 48:233–239. doi:10.1016/j.ymeth.2009.03.003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Givens RM et al (2012) Chromatin architectures at fission yeast transcriptional promoters and replication origins. Nucleic Acids Res 40:7176–7189

    PubMed Central  CAS  PubMed  Google Scholar 

  • Givens RM, Mesner LD, Hamlin JL, Buck MJ, Huberman JA (2011) Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen. BMC Res Notes 4:499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gkikopoulos T et al (2011a) A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333:1758–1760

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gkikopoulos T et al (2011b) The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J 30:1919–1927

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gossett AJ, Lieb JD (2012) In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet 8:e1002771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haberle V et al (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507:381–385. doi:10.1038/nature12974

    CAS  PubMed  Google Scholar 

  • Hartley PD, Madhani HD (2009) Mechanisms that specify promoter nucleosome location and identity. Cell 137:445–458

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henikoff JG, Belsky JA, Krassovsky K, MacAlpine DM, Henikoff S (2011) Epigenome characterization at single base-pair resolution. Proc Natl Acad Sci U S A 108:18318–18323

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hennig BP, Bendrin K, Zhou Y, Fischer T (2012) Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep 13:997–1003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hertel CB, Längst G, Hörz W, Korber P (2005) Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening. Mol Cell Biol 25:10755–10767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hörz W, Altenburger W (1981) Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res 9:2643–2658

    PubMed Central  PubMed  Google Scholar 

  • Hu Z et al (2014) Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408. doi:10.1101/gad.233221.113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huebert DJ, Kuan PF, Keles S, Gasch AP (2012) Dynamic changes in nucleosome occupancy are not predictive of gene expression dynamics but are linked to transcription and chromatin regulators. Mol Cell Biol 32:1645–1653. doi:10.1128/mcb.06170-11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hughes AL, Jin Y, Rando OJ, Struhl K (2012) A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide. Pattern Mol Cell 48:5–15

    CAS  Google Scholar 

  • Hughes AL, Rando OJ (2014) Mechanisms underlying nucleosome positioning in vivo. Annu Rev Biophys 43:41–63. doi:10.1146/annurev-biophys-051013-023114

    CAS  PubMed  Google Scholar 

  • Iyer VR (2012) Nucleosome positioning: bringing order to the eukaryotic genome. Trends Cell Biol 22:250–256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jamai A, Imoberdorf RM, Strubin M (2007) Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol Cell 25:345–355

    CAS  PubMed  Google Scholar 

  • Jansen A, Verstrepen KJ (2011) Nucleosome positioning in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 75:301–320. doi:10.1128/mmbr.00046-10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang C, Pugh BF (2009a) A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol 10:R109

    PubMed Central  PubMed  Google Scholar 

  • Jiang C, Pugh BF (2009b) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161–172

    CAS  PubMed  Google Scholar 

  • Kaplan N, Hughes TR, Lieb JD, Widom J, Segal E (2010) Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology. Genome Biol 11:140–152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan N et al (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kent NA, Adams S, Moorhouse A, Paszkiewicz K (2011) Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing. Nucleic Acids Res 39:e26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koerber RT, Rhee HS, Jiang C, Pugh BF (2009) Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol Cell 35:889–902. doi:10.1016/j.molcel.2009.09.011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Korber P (2012) Active nucleosome positioning beyond intrinsic biophysics is revealed by in vitro reconstitution. Biochem Soc Trans 40:377–382

    CAS  PubMed  Google Scholar 

  • Korber P, Barbaric S (2014) The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 42:10888–10902. doi:10.1093/nar/gku784

    PubMed Central  CAS  PubMed  Google Scholar 

  • Korber P, Horz W (2004) In vitro assembly of the characteristic chromatin organization at the yeast PHO5 promoter by a replication-independent extract system. J Biol Chem 279:35113–35120. doi:10.1074/jbc.M405446200

    CAS  PubMed  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294

    CAS  PubMed  Google Scholar 

  • Kornberg RD, Stryer L (1988) Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res 16:6677–6690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Korolev N, Vorontsova OV, Nordenskiold L (2007) Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. Prog Biophys Mol Biol 95:23–49. doi:10.1016/j.pbiomolbio.2006.11.003

    CAS  PubMed  Google Scholar 

  • Krietenstein N, Wippo CJ, Lieleg C, Korber P (2012) Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning. Methods Enzymol 513:205–232

    CAS  PubMed  Google Scholar 

  • Kristell C, Orzechowski Westholm J, Olsson I, Ronne H, Komorowski J, Bjerling P (2010) Nitrogen depletion in the fission yeast Schizosaccharomyces pombe causes nucleosome loss in both promoters and coding regions of activated genes. Genome Res 20:361–371. doi:10.1101/gr.098558.109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuan PF, Huebert D, Gasch A, Keles S (2009) A non-homogeneous hidden-state model on first order differences for automatic detection of nucleosome positions. Stat App Genet Mol Biol 8: Article29 doi:10.2202/1544-6115.1454

  • Lam FH, Steger DJ, O’Shea EK (2008) Chromatin decouples promoter threshold from dynamic range. Nature 453:246–250

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lantermann A, Stralfors A, Fagerstrom-Billai F, Korber P, Ekwall K (2009) Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe. Methods 48:218–225. doi:10.1016/j.ymeth.2009.02.004

    CAS  PubMed  Google Scholar 

  • Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17:251–257

    CAS  PubMed  Google Scholar 

  • Lee JS et al (2012) Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev 26:914–919

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–1244

    CAS  PubMed  Google Scholar 

  • Liu H, Zhang R, Xiong W, Guan J, Zhuang Z, Zhou S (2013) A comparative evaluation on prediction methods of nucleosome positioning. Brief Bioinform. doi:10.1093/bib/bbt062

    PubMed Central  Google Scholar 

  • Locke G, Tolkunov D, Moqtaderi Z, Struhl K, Morozov AV (2010) High-throughput sequencing reveals a simple model of nucleosome energetics. Proc Natl Acad Sci U S A 107:20998–21003. doi:10.1073/pnas.1003838107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Q, Wallrath LL, Elgin SCR (1994) Nucleosome positioning and gene regulation. J Cell Biochem 55:83–92

    CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    CAS  PubMed  Google Scholar 

  • Maeshima K, Imai R, Tamura S, Nozaki T (2014) Chromatin as dynamic 10-nm fibers. Chromosoma 123:225–237. doi:10.1007/s00412-014-0460-2

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mavrich TN et al (2008a) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mavrich TN et al (2008b) Nucleosome organization in the Drosophila genome. Nature 453:358–362

    PubMed Central  CAS  PubMed  Google Scholar 

  • McGhee JD, Felsenfeld G (1983) Another potential artifact in the study of nucleosome phasing by chromatin digestion with micrococcal nuclease. Cell 32:1205–1215

    CAS  PubMed  Google Scholar 

  • McManus J et al (1994) Unusual chromosome structure of fission yeast DNA in mouse cells. J Cell Sci 107(Pt 3):469–486

    CAS  PubMed  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348

    CAS  PubMed  Google Scholar 

  • Mobius W, Gerland U (2010) Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites. PLoS Comput Biol 6:e1000891

    PubMed Central  PubMed  Google Scholar 

  • Mobius W, Osberg B, Tsankov AM, Rando OJ, Gerland U (2013) Toward a unified physical model of nucleosome patterns flanking transcription start sites. Proc Natl Acad Sci U S A 110:5719–5724

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mojardin L, Vazquez E, Antequera F (2013) Specification of DNA replication origins and genomic base composition in fission yeasts. J Mol Biol 425(23):4706–4713

  • Morse RH (2007) Transcription factor access to promoter elements. J Cell Biochem 102:560–570

    CAS  PubMed  Google Scholar 

  • Moyle-Heyrman G et al (2013) Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning. Proc Natl Acad Sci U S A 110:20158–20163. doi:10.1073/pnas.1315809110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy PL, Cleary ML, Brown PO, Lieb JD (2003) Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc Natl Acad Sci U S A 100:6364–6369. doi:10.1073/pnas.1131966100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nellore A, Bobkov K, Howe E, Pankov A, Diaz A, Song JS (2012) NSeq: a multithreaded Java application for finding positioned nucleosomes from sequencing data. Front Genet 3:320. doi:10.3389/fgene.2012.00320

    PubMed Central  PubMed  Google Scholar 

  • Nikitina T, Wang D, Gomberg M, Grigoryev SA, Zhurkin VB (2013) Combined micrococcal nuclease and exonuclease III digestion reveals precise positions of the nucleosome core/linker junctions: implications for high-resolution nucleosome mapping. J Mol Biol 425:1946–1960. doi:10.1016/j.jmb.2013.02.026

    CAS  PubMed  Google Scholar 

  • Nishida H (2012) Conservation of nucleosome positions in duplicated and orthologous gene pairs. Sci World J 2012:298174. doi:10.1100/2012/298174

    Google Scholar 

  • Nishida H, Katayama T, Suzuki Y, Kondo S, Horiuchi H (2013) Base composition and nucleosome density in exonic and intronic regions in genes of the filamentous ascomycetes Aspergillus nidulans and Aspergillus oryzae. Gene 525:5–10. doi:10.1016/j.gene.2013.04.077

    CAS  PubMed  Google Scholar 

  • Nishida H, Kondo S, Matsumoto T, Suzuki Y, Yoshikawa H, Taylor TD, Sugiyama J (2012) Characteristics of nucleosomes and linker DNA regions on the genome of the basidiomycete Mixia osmundae revealed by mono- and dinucleosome mapping. Open Biol 2:120043. doi:10.1098/rsob.120043

    PubMed Central  PubMed  Google Scholar 

  • Oberg C, Izzo A, Schneider R, Wrange O, Belikov S (2012) Linker histone subtypes differ in their effect on nucleosomal spacing in vivo. J Mol Biol 419:183–197. doi:10.1016/j.jmb.2012.03.007

    PubMed  Google Scholar 

  • Ozonov EA, van Nimwegen E (2013) Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers. PLoS Comput Biol 9:e1003181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL (2011) Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144:200–213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parnell TJ, Huff JT, Cairns BR (2008) RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J 27:100–110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Partensky PD, Narlikar GJ (2009) Chromatin remodelers act globally, sequence positions nucleosomes locally. J Mol Biol 391:12–25

    PubMed Central  CAS  PubMed  Google Scholar 

  • Platt JL, Kent NA, Harwood AJ, Kimmel AR (2013) Analysis of chromatin organization by deep sequencing technologies. Methods Mol Biol (Clifton, NJ) 983:173–183. doi:10.1007/978-1-62703-302-2_9

  • Pointner J et al (2012) CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 31:4388–4403

    PubMed Central  CAS  PubMed  Google Scholar 

  • Polach KJ, Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254:130–149

    CAS  PubMed  Google Scholar 

  • Prunell A (1998) A topological approach to nucleosome structure and dynamics: the linking number paradox and other issues. Biophys J 74:2531–2544. doi:10.1016/s0006-3495(98)77961-5

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quintales L, Vazquez E, Antequera F (2014) Comparative analysis of methods for genome-wide nucleosome cartography. Brief Bioinform. doi:10.1093/bib/bbu037

    PubMed  Google Scholar 

  • Radman-Livaja M, Rando OJ (2010) Nucleosome positioning: how is it established, and why does it matter? Dev Biol 339:258–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Radman-Livaja M, Verzijlbergen KF, Weiner A, van Welsem T, Friedman N, Rando OJ, van Leeuwen F (2011) Patterns and mechanisms of ancestral histone protein inheritance in budding yeast. PLoS Biol 9:e1001075

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raisner RM et al (2005) Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123:233–248

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rando OJ (2010) Genome-wide mapping of nucleosomes in yeast. Methods Enzymol 470:105–118. doi:10.1016/s0076-6879(10)70005-7

    CAS  PubMed  Google Scholar 

  • Ranjan A et al (2013) Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement. Cell 154:1232–1245. doi:10.1016/j.cell.2013.08.005

    CAS  PubMed  Google Scholar 

  • Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814. doi:10.1126/science.1098641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013. doi:10.1126/science.1105891

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raveh-Sadka T et al (2012) Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat Genet 44:743–750

    CAS  PubMed  Google Scholar 

  • Reagan MS, Majors JE (1998) The chromatin structure of the GAL1 promoter forms independently of Reb1p in Saccharomyces cerevisiae. Mol Gen Genet 259:142–149

    CAS  PubMed  Google Scholar 

  • Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147:1408–1419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rhee HS, Pugh BF (2012) Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483:295–301. doi:10.1038/nature10799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    CAS  PubMed  Google Scholar 

  • Rippe K, Schrader A, Riede P, Strohner R, Lehmann E, Längst G (2007) DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc Natl Acad Sci U S A 104:15635–15640

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rizzo JM, Bard JE, Buck MJ (2012) Standardized collection of MNase-seq experiments enables unbiased dataset comparisons. BMC Mol Biol 13:15. doi:10.1186/1471-2199-13-15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rizzo JM, Mieczkowski PA, Buck MJ (2011) Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes. Nucleic Acids Res 39:8803–8819. doi:10.1093/nar/gkr557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez J, McKnight JN, Tsukiyama T (2014) Genome-wide analysis of nucleosome positions, occupancy, and accessibility in yeast: nucleosome mapping, high-resolution histone ChIP, and NCAM. Current protocols in molecular biology / edited by Frederick M Ausubel [et al.] 108:21.28.21-21.28.16 doi:10.1002/0471142727.mb2128s108

  • Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A (2007) Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 27:393–405

    CAS  PubMed  Google Scholar 

  • Schones DE et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    CAS  PubMed  Google Scholar 

  • Segal E et al (2006) A genomic code for nucleosome positioning. Nature 442:772–778

    PubMed Central  CAS  PubMed  Google Scholar 

  • Segal E, Widom J (2009a) Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr Opin Struct Biol 19:65–71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Segal E, Widom J (2009b) What controls nucleosome positions? Trends Genet 25:335–343

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18:735–748

    CAS  PubMed  Google Scholar 

  • Shen CH, Leblanc BP, Alfieri JA, Clark DJ (2001) Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences. Mol Cell Biol 21:534–547. doi:10.1128/mcb. 21.2.534-547.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shim YS et al (2012) Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J 31:4375–4387. doi:10.1038/emboj.2012.267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6:e65

    PubMed Central  PubMed  Google Scholar 

  • Simon JM, Giresi PG, Davis IJ, Lieb JD (2013) A detailed protocol for formaldehyde-assisted isolation of regulatory elements (FAIRE). Current protocols in molecular biology / edited by Frederick M Ausubel [et al.] Chapter 21: Unit21.26 doi:10.1002/0471142727.mb2126s102

  • Small EC, Xi L, Wang JP, Widom J, Licht JD (2014) Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity. Proc Natl Acad Sci U S A 111:E2462–E2471. doi:10.1073/pnas.1400517111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smolle M et al (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19:884–892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soriano I, Quintales L, Antequera F (2013) Clustered regulatory elements at nucleosome-depleted regions punctuate a constant nucleosomal landscape in Schizosaccharomyces pombe. BMC Genomics 14:813. doi:10.1186/1471-2164-14-813

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stein A, Takasuka TE, Collings CK (2010) Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences? Nucleic Acids Res 38:709–719. doi:10.1093/nar/gkp1043

    PubMed Central  CAS  PubMed  Google Scholar 

  • Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 20:267–273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Svaren J, Venter U, Hörz W (1995) In vivo analysis of nucleosome structure and transcription factor binding in Saccharomyces cerevisiae. Methods in Mol Genet 6:153–167

    CAS  Google Scholar 

  • Thomas JO, Furber V (1976) Yeast chromatin structure. FEBS Lett 66:274–280

    CAS  PubMed  Google Scholar 

  • Tirosh I (2012) Computational analysis of nucleosome positioning. Methods Mol Biol (Clifton, NJ) 833:443–449. doi:10.1007/978-1-61779-477-3_27

  • Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18:1084–1091

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tirosh I, Sigal N, Barkai N (2010) Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biol 11:R49

    PubMed Central  PubMed  Google Scholar 

  • Tolkunov D, Zawadzki KA, Singer C, Elfving N, Morozov AV, Broach JR (2011) Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters. Mol Biol Cell 22:2106–2118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsankov A, Yanagisawa Y, Rhind N, Regev A, Rando OJ (2011) Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res 21:1851–1862

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8:e1000414

    PubMed Central  PubMed  Google Scholar 

  • Tsui K, Dubuis S, Gebbia M, Morse RH, Barkai N, Tirosh I, Nislow C (2011) Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns. Mol Cell Biol 31:4348–4355

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsui K, Durbic T, Gebbia M, Nislow C (2012) Genomic approaches for determining nucleosome occupancy in yeast. Methods Mol Biol (Clifton, NJ) 833:389–411. doi:10.1007/978-1-61779-477-3_23

  • Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A, Sidow A (2011) Determinants of nucleosome organization in primary human cells. Nature 474:516–520

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Bakel H, Tsui K, Gebbia M, Mnaimneh S, Hughes TR, Nislow C (2013) A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet 9:e1003479

    PubMed Central  PubMed  Google Scholar 

  • van Holde KE (1989) Chromatin. Springer, New York

    Google Scholar 

  • van Vugt JJ, de Jager M, Murawska M, Brehm A, van Noort J, Logie C (2009) Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS ONE 4:e6345

    PubMed Central  PubMed  Google Scholar 

  • van Werven FJ, van Teeffelen HA, Holstege FC, Timmers HT (2009) Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat Struct Mol Biol 16:1043–1048

    PubMed  Google Scholar 

  • Venter U, Svaren J, Schmitz J, Schmid A, Hörz W (1994) A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J 13:4848–4855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wal M, Pugh BF (2012) Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq. Methods Enzymol 513:233–250. doi:10.1016/B978-0-12-391938-0.00010-0

    CAS  PubMed  Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones—cellular machines for protein folding. Angewandte Chemie (International ed in English) 41:1098–1113

  • Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL (2013) A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340:195–199. doi:10.1126/science.1229758

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90–100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450:1031–1035

    CAS  PubMed  Google Scholar 

  • Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber P (2011) The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J 30:1277–1288

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wippo CJ, Korber P (2012) In vitro reconstitution of in vivo-like nucleosome positioning on yeast DNA. Methods Mol Biol 833:271–287

    CAS  PubMed  Google Scholar 

  • Wu C (1980) The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286:854–860

    CAS  PubMed  Google Scholar 

  • Xu J et al (2012) Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol 13:R27

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yadon AN, Singh BN, Hampsey M, Tsukiyama T (2013) DNA looping facilitates targeting of a chromatin remodeling enzyme. Mol Cell 50:93–103. doi:10.1016/j.molcel.2013.02.005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada K et al (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448–453

    CAS  PubMed  Google Scholar 

  • Yang JG, Madrid TS, Sevastopoulos E, Narlikar GJ (2006) The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat Struct Mol Biol 13:1078–1083

    CAS  PubMed  Google Scholar 

  • Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF (2012) Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149:1461–1473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yen K, Vinayachandran V, Pugh BF (2013) SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154:1246–1256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    CAS  PubMed  Google Scholar 

  • Zawadzki KA, Morozov AV, Broach JR (2009) Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae. Mol Biol Cell 20:3503–3513. doi:10.1091/mbc.E09-02-0111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zentner GE, Tsukiyama T, Henikoff S (2013) ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLoS Genet 9:e1003317

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Reese JC (2007) Exposing the core promoter is sufficient to activate transcription and alter coactivator requirement at RNR3. Proc Natl Acad Sci U S A 104:8833–8838

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Ma H, Pugh BF (2011a) Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res 21:875–884

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2009) Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16:847–852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Pugh BF (2011) High-resolution genome-wide mapping of the primary structure of chromatin. Cell 144:175–186

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF (2011b) A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332:977–980

    CAS  PubMed  Google Scholar 

  • Zhao J, Herrera-Diaz J, Gross DS (2005) Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol Cell Biol 25:8985–8999

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all colleagues whose work we could not cite because of space restrictions. This work was funded by the German Research Community (DFG) through the Collaborative Research Cluster SFB1064 and by the Bavarian State Ministry of Education and Culture, Science and the Arts through the Bavarian Research Network for Molecular Biosystems (BioSysNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Korber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieleg, C., Krietenstein, N., Walker, M. et al. Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 124, 131–151 (2015). https://doi.org/10.1007/s00412-014-0501-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0501-x

Keywords

Navigation