Skip to main content
Log in

SUV39h-independent association of HP1β with fibrillarin-positive nucleolar regions

  • RESEARCH ARTICLE
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Heterochromatin protein 1 (HP1), which binds to sites of histone H3 lysine 9 (H3K9) methylation, is primarily responsible for gene silencing and the formation of heterochromatin. We observed that HP1β is located in both the chromocenters and fibrillarin-positive nucleoli interiors. However, HP1α and HP1γ occupied fibrillarin-positive compartments to a lesser extent, corresponding to the distinct levels of HP1 subtypes at the promoter of rDNA genes. Deficiency of histone methyltransferases SUV39h and/or inhibition of histone deacetylases (HDACi) decreased HP1β and H3K9 trimethylation at chromocenters, but not in fibrillarin-positive regions that co-localized with RNA polymerase I. Similarly, SUV39h- and HDACi-dependent nucleolar rearrangement and inhibition of rDNA transcription did not affect the association between HP1β and fibrillarin. Moreover, the presence of HP1β in nucleoli is likely connected with transcription of ribosomal genes and with the role of fibrillarin in nucleolar processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

μl:

Microliter(s)

μm:

Micrometer(s)

3D:

Three-dimensional

BSA:

Bovine serum albumin

CD:

Chromodomain

CSD:

C-terminal chromoshadow domain

DMEM:

Dulbecco's modified Eagle's medium

dn:

Double null

Dnmt:

DNA methyltransferase

FITC:

Fluorescein isothiocyanate

GFP:

Green fluorescence protein

h:

Hour

H3:

Histone H3

H1, H2A, H2B, H4:

histones H1, H2A, H2B, H4

HDACs:

Histone deacetylases

HMTs:

Histone methyltransferases

HP1:

Heterochromatin protein 1

K (K4, K9, K27...):

Lysine

MEFs:

Mouse embryonic fibroblasts

MeCP2:

Methyl CpG-binding protein

PBS:

Phosphate-buffered saline

PML:

Promyelocytic leukemia bodies

RT:

Room temperature

RNA Pol I:

RNA polymerase I

snoRNAs:

Small nucleolar RNAs

wt:

Wild type

TSA:

Trichostatin A

References

  • Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J Cell Biol 143:1763–1774

    Article  CAS  PubMed  Google Scholar 

  • Allis CD, Ziegler YS, Gorovsky MA, Olmsted JB (1982) A conserved histone variant enriched in nucleoli of mammalian cells. Cell 31:131–136

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Quezada C, Molina A, Krauskopf M, Vera MI, Thiry M (2006) Ultrastructural changes of the carp (Cyprinus carpio) hepatocyte nucleolus during seasonal acclimatization. Biol Cell 98:457–463

    Article  CAS  PubMed  Google Scholar 

  • Bártová E, Pacherník J, Harničarová A, Kovařík A, Kovaříková M, Hofmanová J, Skalníková M, Kozubek M, Kozubek S (2005) Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci 118:5035–5046

    Article  PubMed  Google Scholar 

  • Bártová E, Pacherník J, Kozubík A, Kozubek S (2007) Differentiation-specific association of HP1alpha and HP1beta with chromocentres is correlated with clustering of TIF1β at these sites. Histochem Cell Biol 127:375–388

    Article  PubMed  Google Scholar 

  • Bártová E, Galiová G, Krejčí J, Harničarová A, Strašák L, Kozubek S (2008) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Differentiation 76:24–32

    PubMed  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–858

    Article  CAS  PubMed  Google Scholar 

  • Cammas F, Oulad-Abdelghani M, Vonesch JL, Huss-Garcia Y, Chambon P, Losson R (2002) Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 115:3439–3448

    CAS  PubMed  Google Scholar 

  • Chen HK, Pai CY, Huang JY, Yeh NH (1999) Human Nopp 140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol Cell Biol 19:8536–8546

    CAS  PubMed  Google Scholar 

  • Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299:721–725

    Article  CAS  PubMed  Google Scholar 

  • Dundr M, Raška I (1993) Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res 208:275–281

    Article  CAS  PubMed  Google Scholar 

  • Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927

    Article  CAS  PubMed  Google Scholar 

  • Erard MS, Belenguer P, Caizergues-Ferrer M, Pantaloni A, Amalric F (1988) A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H1. Eur J Biochem 175:525–530

    Article  CAS  PubMed  Google Scholar 

  • Espada J, Ballestar E, Santoro R, Fraga MF, Villar-Garea A, Németh A, Lopez-Serra L, Ropero S, Aranda A, Orozco H, Moreno V, Juarranz A, Stockert JC, Längst G, Grummt I, Bickmore W, Esteller M (2007) Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Res 35:2191–2198

    Article  CAS  PubMed  Google Scholar 

  • Festenstein R, Pagakis SN, Hiragami K, Lyon D, Verreault A, Sekkali B, Kioussis D (2003) Modulation of heterochromatin protein 1 dynamics in primary Mammalian cells. Science 299:719–721

    Article  CAS  PubMed  Google Scholar 

  • Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M (2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450:309–313

    Article  CAS  PubMed  Google Scholar 

  • Harničarová Horáková A, Galiová G, Legartová S, Kozubek S, Matula P, Bártová E (2009) Chromocentre integrity and epigenetic marks. J Struct Biol (in press)

  • Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y (2003) Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J Cell Sci 116:3327–3338

    Article  CAS  PubMed  Google Scholar 

  • Hozák P, Cook PR, Schöfer C, Mosgöller W, Wachtler F (1994) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107(Pt 2):639–648

    Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872

    CAS  PubMed  Google Scholar 

  • Jansen RP, Hurt EC, Kern H, Lehtonen H, Carmo-Fonseca M, Lapeyre B, Tollervey D (1991) Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. J Cell Biol 113:715–729

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lachner M, O'Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  CAS  PubMed  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  Google Scholar 

  • Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, Chambon P (1996) A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 15:6701–6715

    PubMed  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13:1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Leung AK, Trinkle-Mulcahy L, Lam YW, Andersen JS, Mann M, Lamond AI (2006) NOPdb: nucleolar proteome database. Nucleic Acids Res 34:D218–D220 (Database issue)

    Article  CAS  PubMed  Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5:296–304

    Article  CAS  PubMed  Google Scholar 

  • McKeown PC, Shaw PJ (2009) Chromatin: linking structure and function in the nucleolus. Chromosoma 118:11–23

    Article  PubMed  Google Scholar 

  • McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157

    Article  CAS  PubMed  Google Scholar 

  • Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234

    Article  CAS  PubMed  Google Scholar 

  • Minc E, Courvalin JC, Buendia B (2000) HP1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet 90:279–284

    Article  CAS  PubMed  Google Scholar 

  • Minc E, Allory Y, Courvalin JC, Buendia B (2001) Immunolocalization of HP1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci 23:171–174

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R (2001) Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 7:729–739

    Article  CAS  PubMed  Google Scholar 

  • Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J Jr (2008) The maternal nucleolus is essential for early embryonic development in mammals. Science 319:613–616

    Article  CAS  PubMed  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  • Paro R, Hogness DS (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA 88:263–267

    Article  CAS  PubMed  Google Scholar 

  • Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:19–20

    Article  Google Scholar 

  • Peters AH, Mermoud JE, O'Carroll D, Pagani M, Schweizer D, Brockdorff N, Jenuwein T (2002) Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30:77–80

    Article  CAS  PubMed  Google Scholar 

  • Santoro R, Grummt I (2005) Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol Cell Biol 25:2539–2546

    Article  CAS  PubMed  Google Scholar 

  • Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396

    Article  CAS  PubMed  Google Scholar 

  • Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, Eissenberg JC, Elgin SC, Rothfield NF, Earnshaw WC (1993) Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J Cell Sci 104:573–582

    PubMed  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  CAS  PubMed  Google Scholar 

  • Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA 103:8703–8708

    Article  CAS  PubMed  Google Scholar 

  • Singh PB, Georgatos SD (2002) HP1: facts, open questions, and speculation. J Struct Biol 140:10–16

    Article  CAS  PubMed  Google Scholar 

  • Smallwood A, Estève PO, Pradhan S, Carey M (2007) Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Soille P (2004) Morphological image analysis, principles and applications, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Strašák L, Bártová E, Harničarová A, Galiová G, Krejčí J, Kozubek S (2009) H3K9 acetylation and radial chromatin positioning. J Cell Physiol 220:91–101

    Article  PubMed  Google Scholar 

  • Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol 3:114–120

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271:14653–14656

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Feng W, Imhof A, Grummt I, Zhou Y (2007) Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol Cell 27:585–595

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the research projects: LC535, LC06027, ME919, AVOZ50040702, AVOZ50040507, 2B06052, and 1QS500040508. We thank Prof. Thomas Jenuwein and Dr. Suzane Opravil for providing us the SUV39h-deficient cells, and Dr. Teresa Sullivan and Prof. Collin L. Stewart for LMNA (dn) fibroblasts. We also thank Dr. R. Santoro for providing the rDNA and 28S rDNA primer sequences and Dr. Monika Lachner for the valuable comments of our manuscript. GFP-HP1β plasmid was a generous gift from Dr. Tom Misteli, Laboratory of Receptor Biology and Gene Expression, National Institute of Health, Bethesda. We are also grateful to Dr. Laney Weber from BioScience Writers (Houston, TX, USA) and SPi editing service for the critical revision of our manuscript. Many thanks to Dr. Joost Zomerdijk (from Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK) for recommending the antibody against the large RNA Pol I subunit (RPA194).

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Bártová.

Additional information

Communicated by T. Misteli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harničarová Horáková, A., Bártová, E., Galiová, G. et al. SUV39h-independent association of HP1β with fibrillarin-positive nucleolar regions. Chromosoma 119, 227–241 (2010). https://doi.org/10.1007/s00412-009-0252-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0252-2

Keywords

Navigation