Skip to main content
Log in

Germline cyst development and imprinting in male mealybug Planococcus citri

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In the epigenetic modifications involved in the phenomenon of imprinting, which is thought to take place during gametogenesis, one of the primary roles is exerted by histone tail modifications acting on chromatin structure. What is more, in insects like mealybugs, with a lecanoid chromosome system, imprinting is strictly related to sex determination. In many diverse species gametes originate in specific, highly evolutionarily conserved structures called germline cysts. The use of staining techniques specific for fusomal components like F-actin has allowed us to describe for the first time the morphogenesis of male germline cysts in the mealybug Planococcus citri. Antibodies to anti-methylated lysine 9 of histone H3 (MeLy9-H3) and anti-heterochromatin protein 1 (HP1) were used during cyst formation to investigate the involvement of these epigenetic modifications in the phenomenon of imprinting and their possible concerted action in sex determination in P. citri. These observations indicate: (i) a specific role for F-actin in the segregation, typical of the lecanoid chromosome system, of genomes of paternal origin; (ii) that the two vital gametes originating from a given meiosis, although carrying the same genome, differ in the levels of both MeLy9-H3 and HP1, one of them being more heavily labelled by both antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2a–h
Fig. 3a,b
Fig. 4
Fig. 5a,b
Fig. 6
Fig. 7a,b
Fig. 8

Similar content being viewed by others

References

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  CAS  PubMed  Google Scholar 

  • Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD (1989) Genetically haploid spermatids are phenotypically diploid. Nature 337:373–376

    Article  CAS  PubMed  Google Scholar 

  • Brown SW (1969) Developmental control of heterochromatization in coccids. Genetics Suppl 61:191–198

    Google Scholar 

  • Brown SW, Chandra S (1977) Imprinting and differential regulation of homologous chromosomes. In: Goldstein L, Prescott DM (eds) Cell biology: a comprehensive treatise, vol 1, Genetic mechanisms of cells. Academic, London, pp 110–181

    Google Scholar 

  • Brown SW, Nelson-Rees A (1961) Radiation analysis of a lecanoid genetic system. Genetics 46:983–1007

    Google Scholar 

  • Brown SW, Nur U (1964) Heterochromatic chromosomes in the coccids. Science 154:130–136

    Google Scholar 

  • Buning J (1994) The insect ovary: ultrastructure, previtellogenic growth and evolution. Chapman & Hall, London

    Google Scholar 

  • Byers TJ, Dubreuil R, Branton D, Kiehart DP, Goldstein LSB (1987) Drosophila spectrin. II. Conserved features of the alpha-subunit are revealed by analysis of cDNA clones and fusion proteins. J Cell Biol 105:2103–2110

    Article  CAS  PubMed  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Buongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh P (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  CAS  PubMed  Google Scholar 

  • de Cuevas M, Lilly MA, Spradling AC (1997) Germline cyst formation in Drosophila. Annu Rev Genet 31:405–428

    Article  PubMed  Google Scholar 

  • Epstein H, James TC, Singh PB (1992) Cloning and expression of Drosophila HP1 homologs from a mealybug, Planococcus citri. J Cell Sci 101:463–474

    CAS  PubMed  Google Scholar 

  • Ferraro M, Epifani C, Bongiorni S, Nardone AM, Parodi-Delfino S, Pantera G (1998) Cytogenetic characterization of the genome of mealybug Planococcus citri (Homoptera, Coccoidea). Caryologia 51:37–49

    Google Scholar 

  • Ferraro M, Buglia GL, Romano F (2001) Involvement of histone H4 acetylation in the epigenetic inheritance of different activity states of maternally and paternally derived genomes in the mealybug Planococcus citri. Chromosoma 110:93–101

    CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17:1870–1881

    Article  CAS  PubMed  Google Scholar 

  • Grewal SIS, Elgin SCR (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12:178–187

    Article  CAS  PubMed  Google Scholar 

  • Gunsalus KC, Bonaccorsi S, Williams E, Vernì F, Gatti M, Goldberg M (1995) Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homolog, result in defects in centrosome migration and cytokinesis. J Cell Biol 131:1243–1259

    Article  CAS  PubMed  Google Scholar 

  • Hime GR, Brill JA, Fuller MT (1996) Assembly of ring canals in the male germ line from structural components of the contractile ring. J Cell Sci 109:2779–2788

    CAS  PubMed  Google Scholar 

  • Hughes-Schrader S (1948) Cytology of coccids (Coccoidea–Homoptera). Adv Genet 2:127–203

    Google Scholar 

  • James TC, Elgin SCR (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Lachner M, O’Carrol D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kirschmann DA, Wallrath LL (2002) Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci USA 99:16462–16469

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Danze, JR, Alvarez P, Belmont AS, Wallrath LL (2003) Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130:1817–1824

    Article  CAS  PubMed  Google Scholar 

  • Nelson-Rees W (1960) A study of sex predetermination in the mealy bug Planococcus citri (Risso). J Exp Zool 144:111–137

    CAS  PubMed  Google Scholar 

  • Noguchi T, Miller KG (2003) A role for actin dynamics in individualization during spermatogenesis in Drosophila melanogaster. Development 130:1805–1816

    Article  CAS  PubMed  Google Scholar 

  • Nur U (1967) Reversal of heterochromatization and the activity of the paternal chromosome set in the male mealy bug. Genetics 56:375–389

    CAS  PubMed  Google Scholar 

  • Pepling ME, de Cuevas M, Spradling AC (1999) Germline cysts: a conserved phase of germ cell development? Trends Cell Biol 9:257–262

    Article  CAS  PubMed  Google Scholar 

  • Sims RJ III, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19:629–639

    Article  CAS  PubMed  Google Scholar 

  • Strahl B, Allis C (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Surani MAH, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    CAS  PubMed  Google Scholar 

  • Surani MA (1991) Genomic imprinting: Developmental significance and molecular mechanism. Curr Opin Genet Dev 1:241–246

    CAS  PubMed  Google Scholar 

  • Telfer W (1975) Development and physiology of the oocyte–nurse cell syncytium. In: Treherne JE, Berridge MJ, Wigglesworth VB (eds) Advances in insect physiology, vol 11. Academic, London, pp 223–319

    Google Scholar 

  • Turner B (2000) Histone acetylation and an epigenetic code. Bioessays 22:836–845

    Article  CAS  PubMed  Google Scholar 

  • de Villena FP-M, de la Casa-Esperòn E, Sapienza C (2000) Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet 16:573–579

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T.C. James for providing us with the anti-HP1 antibody (C1A9), Prof. S. Pimpinelli for the anti-MeLy9-H3, and Prof. M. Gatti for the anti-α-spectrin antibody. The research was supported by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Ferraro.

Additional information

Communicated by A. Spradling

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buglia, G.L., Ferraro, M. Germline cyst development and imprinting in male mealybug Planococcus citri. Chromosoma 113, 284–294 (2004). https://doi.org/10.1007/s00412-004-0317-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0317-1

Keywords

Navigation