Skip to main content
Log in

Bone marrow mesenchymal stem cell transplantation improves radiation-induced heart injury through DNA damage repair in rat model

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Radiotherapy is an effective form of therapy for most thoracic malignant tumors. However, myocardial injury resulting from the high doses of radiation is a severe complication. Here we aimed to study the possibility of reducing radiation-induced myocardial injury with mesenchymal stem cell (MSC) transplantation. We used MSCs extracted from bone marrow (BMSCs) to transplant via the tail vein into a radiation-induced heart injury (RIHI) rat model. The rats were divided into six groups: a Sham group, an IRR (irradiation) group, and four IRR + BMSCs transplantation groups obtained at different time points. After irradiation, BMSC transplantation significantly enhanced the cardiac function in rats. By analyzing the expression of PPAR-α, PPAR-γ, TGF-β, IL-6, and IL-8, we found that BMSC transplantation alleviated radiation-induced myocardial fibrosis and decreased the inflammatory reaction. Furthermore, we found that expression of γ-H2AX, XRCC4, DNA ligase4, and TP53BP1, which are associated with DNA repair, was up-regulated, along with increased secretion of growth factors SDF-1, CXCR4, VEGF, and IGF in rat myocardium in the IRR + BMSCs transplantation groups compared with the IRR group. Thus, BMSC transplantation has the potential to improve RIHI via DNA repair and be a new therapeutic approach for patients with myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amado LC, Saliaris AP, Schuleri KH, St JM, Xie JS, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman AW, Hare JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102:11474–11479

    Article  ADS  Google Scholar 

  • Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    Article  Google Scholar 

  • Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S (2011) Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 11:3299–3311

    Article  Google Scholar 

  • Azimzadeh O, Sievert W, Sarioglu H, Yentrapalli R, Barjaktarovic Z, Sriharshan A, Ueffing M, Janik D, Aichler M, Atkinson MJ, Multhoff G, Tapio S (2013) PPAR alpha: a novel radiation target in locally exposed Mus musculus heart revealed by quantitative proteomics. J Proteome Res 12:2700–2714

    Article  Google Scholar 

  • Azzam EI, Jay-Gerin J, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327:48–60

    Article  Google Scholar 

  • Baker JE, Fish BL, Su J, Haworth ST, Strande JL, Komorowski RA, Migrino RQ, Doppalapudi A, Harmann L, Allen Li X, Hopewell JW, Moulder JE (2010) 10 Gy total body irradiation increases risk of coronary sclerosis, degeneration of heart structure and function in a rat model. Int J Radiat Biol 85:1089–1100

    Article  Google Scholar 

  • Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217:318–324

    Article  Google Scholar 

  • Caplan AI, Correa D (2011) PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop Res 29:1795–1803

    Article  Google Scholar 

  • Chaturvedi RK, Beal MF (2008) PPAR: a therapeutic target in Parkinson’s disease. J Neurochem 106:506–518

    Article  Google Scholar 

  • Cheng AS, Yau TM (2008) Paracrine effects of cell transplantation: strategies to augment the efficacy of cell therapies. Semin Thorac Cardiovasc Surg 20:94–101

    Article  Google Scholar 

  • Chistiakov DA, Orekhov AN, Bobryshev YV (2016) The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol 101:231–240

    Article  Google Scholar 

  • Cottarel J, Frit P, Bombarde O, Salles B, Negrel A, Bernard S, Jeggo PA, Lieber MR, Modesti M, Calsou P (2013) A noncatalytic function of the ligation complex during nonhomologous end joining. J Cell Biol 200:173–186

    Article  Google Scholar 

  • Das SK, Chakrabarti R (2006) Role of PPAR in cardiovascular diseases. Recent Pat Cardiovasc Drug Discov 1:193–209

    Article  Google Scholar 

  • Diep QN, Benkirane K, Amiri F, Cohn JS, Endemann D, Schiffrin EL (2004) PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Cardiol 36:295–304

    Article  Google Scholar 

  • Dong F, Harvey J, Finan A, Weber K, Agarwal U, Penn MS (2012) Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. Circulation 126:314–324

    Article  Google Scholar 

  • Gabriels K, Hoving S, Seemann I, Visser NL, Gijbels MJ, Pol JF, Daemen MJ, Stewart FA, Heeneman S (2012) Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiother Oncol 105:358–364

    Article  Google Scholar 

  • Gao S, Wu R, Zeng Y (2012) Up-regulation of peroxisome proliferator-activated receptor gamma in radiation-induced heart injury in rats. Radiat Environ Biophys 51:53–59

    Article  Google Scholar 

  • Ghobadi G, van der Veen S, Bartelds B, de Boer RA, Dickinson MG, de Jong JR, Faber H, Niemantsverdriet M, Brandenburg S, Berger RMF, Langendijk JA, Coppes RP, van Luijk P (2012) Physiological interaction of heart and lung in thoracic irradiation. Int J Radiat Oncol Biol Phys 84:e639–e646

    Article  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  Google Scholar 

  • Gu J, Lu H, Tsai AG, Schwarz K, Lieber MR (2007) Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence. Nucl Acids Res 35:5755–5762

    Article  Google Scholar 

  • Hart CM, Roman J, Reddy R, Sime PJ (2008) PPARgamma: a novel molecular target in lung disease. J Investig Med 56:515–517

    Article  Google Scholar 

  • Jiang S, Kh HH, Ahmed RP, Idris NM, Salim A, Ashraf M (2008) Transcriptional profiling of young and old mesenchymal stem cells in response to oxygen deprivation and reparability of the infarcted myocardium. J Mol Cell Cardiol 44:582–596

    Article  Google Scholar 

  • Kuo LJ, Yang LX (2008) Gamma-H2AX—a novel biomarker for DNA double-strand breaks. In Vivo 22:305–309

    Google Scholar 

  • Lenarczyk M, Lam V, Jensen E, Fish BL, Su J, Koprowski S, Komorowski RA, Harmann L, Migrino RQ, Li XA, Hopewell JW, Moulder JE, Baker JE (2013) Cardiac injury after 10 Gy total body irradiation: indirect role of effects on abdominal organs. Radiat Res 180:247–258

    Article  Google Scholar 

  • Lenarczyk M, Su J, Haworth ST, Komorowski R, Fish BL, Migrino RQ, Harmann L, Hopewell JW, Kronenberg A, Patel S, Moulder JE, Baker JE (2015) Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation. Pharmacol Res Perspect 3:e145

    Article  Google Scholar 

  • Li H, Gao F, Ma L, Jiang J, Miao J, Jiang M, Fan Y, Wang L, Wu D, Liu B, Wang W, Lui VC, Yuan Z (2012) Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in rat foetuses with spina bifida aperta. J Cell Mol Med 16:1606–1617

    Article  Google Scholar 

  • Lindahl T (1982) DNA repair enzymes. Annu Rev Biochem 51:61–87

    Article  Google Scholar 

  • Marks LB, Yu X, Prosnitz RG, Zhou SM, Hardenbergh PH, Blazing M, Hollis D, Lind P, Tisch A, Wong TZ, Borges-Neto S (2005) The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 63:214–223

    Article  Google Scholar 

  • Martin M, Lefaix J, Delanian S (2000) TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47:277–290

    Article  Google Scholar 

  • Morgan WF (2003) Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation? Oncogene 22:7094–7099

    Article  Google Scholar 

  • Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135

    Article  Google Scholar 

  • Nelson TJ, Faustino RS, Chiriac A, Crespo-Diaz R, Behfar A, Terzic A (2008) CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 26:1464–1473

    Article  Google Scholar 

  • Nicolay NH, Liang Y, Lopez PR, Bostel T, Trinh T, Sisombath S, Weber KJ, Ho AD, Debus J, Saffrich R, Huber PE (2015) Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget 6:2076–2087

    Article  Google Scholar 

  • Noon AT, Goodarzi AA (2011) 53BP1-mediated DNA double strand break repair: insert bad pun here. DNA Repair (Amst) 10:1071–1076

    Article  Google Scholar 

  • Pein F, Iserin L, de Vathaire F, Lemerle J (2004) Cardiac toxicity of cancer treatment regimes in children and adolescents: physiopathology, clinical data and the paediatric oncologist’s point of view. Bull Cancer 91(Suppl 3):185–191

    Google Scholar 

  • Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol Biochimie et Biologie Cellulaire 81:123–129

    Article  Google Scholar 

  • Rugbjerg K, Mellemkjaer L, Boice JD, Kober L, Ewertz M, Olsen JH (2014) Cardiovascular disease in survivors of adolescent and young adult cancer: a Danish cohort study, 1943-2009. J Natl Cancer Inst 106:u110

    Article  Google Scholar 

  • Rutqvist LE, Rose C, Cavallin-Stahl E (2003) A systematic overview of radiation therapy effects in breast cancer. Acta Oncol 42:532–545

    Article  Google Scholar 

  • Schellong G, Riepenhausen M, Bruch C, Kotthoff S, Vogt J, Bolling T, Dieckmann K, Potter R, Heinecke A, Bramswig J, Dorffel W (2010) Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for Hodgkin disease in children and adolescents: report from the longitudinal GPOH follow-up project of the German-Austrian DAL-HD studies. Pediatr Blood Cancer 55:1145–1152

    Article  Google Scholar 

  • Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, Kellner J, Zviman MM, Hatzistergos KE, Detrick B, Conte JV, McNiece I, Steenbergen C, Lardo AC, Hare JM (2009) Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 30:2722–2732

    Article  Google Scholar 

  • Schultz-Hector S (1992) Radiation-induced heart disease: review of experimental data on dose response and pathogenesis. Int J Radiat Biol 61:149–160

    Article  Google Scholar 

  • Schultz-Hector S, Trott KR (2007) Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 67:10–18

    Article  Google Scholar 

  • Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  Google Scholar 

  • Smeets PJ, Planavila A, van der Vusse GJ, van Bilsen M (2007) Peroxisome proliferator-activated receptors and inflammation: take it to heart. Acta Physiol (Oxf) 191:171–188

    Article  Google Scholar 

  • Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M, Daemen M (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168:649–658

    Article  Google Scholar 

  • Sugrue T, Brown JA, Lowndes NF, Ceredig R (2013) Multiple facets of the DNA damage response contribute to the radioresistance of mouse mesenchymal stromal cell lines. Stem Cells 31:137–145

    Article  Google Scholar 

  • Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  Google Scholar 

  • Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28:2667–2677

    Article  Google Scholar 

  • Yeung TK, Lauk S, Simmonds RH, Hopewell JW, Trott KR (1989) Morphological and functional changes in the rat heart after X irradiation: strain differences. Radiat Res 119:489–499

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks for the guidance of Enyang Wang and Fuda Xiao.

Funding

This study was supported by the National Natural Foundation of China (Grant Numbers: 81370717 and 81171072) as well as the National 973 project of China (Grant Number: 2013CB945402).

Author contributions

SG designed and performed all the experiments and wrote the manuscript; RW guided the development of the experimental animal model; YCZ, ZYZ and JNM helped do the experiments. ZYZ analyzed the data and helped with drawing the figures; ZWY supervised the project and wrote the manuscript with SG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei Yuan.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Human and animal rights statement

All animal treatment protocols in this study adhered to the National Institutes of Health Guide for Care and Use of Laboratory Animals, and were approved by the Institutional Animal Care and Use Board of Shengjing Hospital of China Medical University.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (PPTX 21236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Zhao, Z., Wu, R. et al. Bone marrow mesenchymal stem cell transplantation improves radiation-induced heart injury through DNA damage repair in rat model. Radiat Environ Biophys 56, 63–77 (2017). https://doi.org/10.1007/s00411-016-0675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-016-0675-0

Keywords

Navigation