Skip to main content
Log in

Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies

  • Review Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Ionizing radiation is a well-known but little understood risk factor for lens opacities. Until recently, cataract development was considered to be a deterministic effect occurring at lens doses exceeding a threshold of 5–8 Gy. Substantial uncertainty about the level and the existence of a threshold subsists. The International Commission on Radiation Protection recently revised it to 0.5 Gy. Based on a systematic literature review of epidemiological studies on exposure to low levels of ionizing radiation and the occurrence of lens opacities, a list of criteria for new epidemiological studies was compiled, and a list of potential study populations was reviewed. Among 24 publications finally identified, six report analyses of acute exposures in atomic bomb survivors and Chernobyl liquidators, and the others report analyses of protracted exposures in occupationally, medically or accidentally exposed populations. Three studies investigated a dose threshold: in atomic bomb survivors, the best estimates were 1 Sv (95 % CI <0–0.8 Sv) regarding lensectomies; in survivors exposed as children, 0.6 Sv (90 % CI <0.0–1.2 Sv) for cortical cataract prevalence and 0.7 Sv (90 % CI 0.0–2.8 Sv) for posterior subcapsular cataract; and in Chernobyl liquidators, 0.34 Sv (95 % CI 0.19–0.68 Sv) for stage 1 cataract. Current studies are heterogeneous and inconclusive regarding the dose–response relationship. Protracted exposures and high lens doses occur in several occupational groups, for instance, in physicians performing fluoroscopy-guided interventional procedures, and in accidentally exposed populations. New studies with a good retrospective exposure assessment are feasible and should be initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams EE, Brues AM, Anast GA (1983) Survey of ocular cataracts in radium dial workers. Health Phys 44(Suppl 1):73–79

    Google Scholar 

  • Ainsbury EA, Bouffler SD, Dorr W, Graw J, Muirhead CR, Edwards AA, Cooper J (2009) Radiation cataractogenesis: a review of recent studies. Radiat Res 172:1–9

    Article  Google Scholar 

  • Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S (2005) Age-related cataract. Lancet 365:599–609

    Google Scholar 

  • Azizova TV, Muirhead CR, Moseeva MB, Grigoryeva ES, Sumina MV, O’Hagan J, Zhang W, Haylock RJ, Hunter N (2011) Cerebrovascular diseases in nuclear workers first employed at the Mayak PA in 1948–1972. Radiat Environ Biophys 50:539–552

    Article  Google Scholar 

  • Belkacemi Y, Ozsahin M, Pene F, Rio B, Laporte JP, Leblond V, Touboul E, Schlienger M, Gorin NC, Laugier A (1996) Cataractogenesis after total body irradiation. Int J Radiat Oncol Biol Phys 35:53–60

    Article  Google Scholar 

  • Bilski P, Bordy J-M, Daures J, Denoziere M, Fantuzzi E, Ferrari P, Gualdrini G, Kopec M, Mariotti F, Monteventi F, Wach S (2011) The new EYE-D™ dosemeter for measurements of HP(3) for medical staff. Radiat Meas 46:1239–1242

    Article  Google Scholar 

  • Blakely EA, Kleiman NJ, Neriishi K, Chodick G, Chylack LT, Cucinotta FA, Minamoto A, Nakashima E, Kumagami T, Kitaoka T, Kanamoto T, Kiuchi Y, Chang P, Fujii N, Shore RE (2010) Radiation cataractogenesis: epidemiology and biology. Radiat Res 173:709–717

    Article  Google Scholar 

  • Brown NA, Shun-Shin GA, Lewis P, Cramp WA, Arlett C, Cole J, Waugh AP, Stephens G (1989) Relationship of cataract to radiation sensitivity. Br J Ophthalmol 73:955–959

    Article  Google Scholar 

  • Cardis E, Hatch M (2011) The Chernobyl accident–an epidemiological perspective. Clin Oncol (R Coll Radiol) 23:251–260

    Article  Google Scholar 

  • Carinou E, Ferrari P, Koukorava C, Krim S, Struelens L (2011) Monte Carlo calculations on extremity and eye lens dosimetry for medical staff at interventional radiology procedures. Radiat Prot Dosim 144:492–496

    Article  Google Scholar 

  • Chen WL, Hwang JS, Hu TH, Chen MS, Chang WP (2001) Lenticular opacities in populations exposed to chronic low-dose-rate gamma radiation from radiocontaminated buildings in Taiwan. Radiat Res 156:71–77

    Article  Google Scholar 

  • Chodick G, Bekiroglu N, Hauptmann M, Alexander BH, Freedman DM, Doody MM, Cheung LC, Simon SL, Weinstock RM, Bouville A, Sigurdson AJ (2008) Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol 168:620–631

    Article  Google Scholar 

  • Choshi K, Takaku I, Mishima H, Takase T, Neriishi S, Finch SC, Otake M (1983) Ophthalmologic changes related to radiation exposure and age in adult health study sample, Hiroshima and Nagasaki. Radiat Res 96:560–579

    Article  Google Scholar 

  • Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY (1993) The lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol 111:831–836

    Article  Google Scholar 

  • Chylack LT Jr, Peterson LE, Feiveson AH, Wear ML, Manuel FK, Tung WH, Hardy DS, Marak LJ, Cucinotta FA (2009) NASA study of cataract in astronauts (NASCA). Report 1: cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat Res 172:10–20

    Article  Google Scholar 

  • Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ (2010) Risk for radiation induced cataract for staff in interventional cardiology: Is there reason for concern? Catheter Cardiovasc Interv 76:826–834

    Article  Google Scholar 

  • Cucinotta FA, Manuel FK, Jones J, Iszard G, Murrey J, Djojonegro B, Wear M (2001) Space radiation and cataracts in astronauts. Radiat Res 156:460–466

    Article  Google Scholar 

  • Day R, Gorin MB, Eller AW (1995) Prevalence of lens changes in Ukrainian children residing around Chernobyl. Health Phys 68:632–642

    Article  Google Scholar 

  • Delcourt C, Carriere I, Ponton-Sanchez A, Lacroux A, Covacho MJ, Papoz L (2000) Light exposure and the risk of cortical, nuclear, and posterior subcapsular cataracts: the Pathologies Oculaires Liees a l’Age (POLA) study. Arch Ophthalmol 118:385–392

    Article  Google Scholar 

  • Domienik J, Brodecki M, Carinou E, Donadille L, Jankowski J, Koukorava C, Krim S, Nikodemova D, Ruiz-Lopez N, Sans-Merce M, Struelens L, Vanhavere F (2011) Extremity and eye lens doses in interventional radiology and cardiology procedures: first results of the ORAMED project. Radiat Prot Dosim 144:442–447

    Article  Google Scholar 

  • Eckerskorn U, Hockwin O, von Korff M, Dragomirescu V, Laser H (1986) Evaluation of possible risk factors in senile cataract by a Scheimpflug photographic study of lens morphology. In: Duncan G (ed) The lens: transparency and cataract. Topics in aging research in Europe, vol 6, pp 37–46

  • Folkerts KH, Franz A, Kiefer A, Hennersdorf G (2002) Radiation exposure of health personnel and patients in the heart catheterization laboratory in during vascular brachytherapy. Z Kardiol 91:493–502

    Article  Google Scholar 

  • Frasch G, Fritzsche E, Kammerer L, Karofsky R, Spiesl J, Stegemann R (2010) Die berufliche Strahlenexposition in Deutschland 2008. Bericht des Strahlenschutzregisters, Fachbereich Strahlenschutz und Gesundheit

    Google Scholar 

  • Gualdrini G, Mariotti F, Wach S, Bilski P, Denoziere M, Daures J, Bordy JM, Ferrari P, Monteventi F, Fantuzzi E (2011) Eye lens dosimetry: task 2 within the ORAMED project. Radiat Prot Dosim 144:473–477

    Article  Google Scholar 

  • Hall P, Granath F, Lundell M, Olsson K, Holm LE (1999) Lenticular opacities in individuals exposed to ionizing radiation in infancy. Radiat Res 152:190–195

    Article  Google Scholar 

  • Hammer GP, Zeeb H, Tveten U, Blettner M (2000) Comparing different methods of estimating cosmic radiation exposure of airline personnel. Radiat Environ Biophys 39:227–231

    Article  Google Scholar 

  • Hourihan F, Mitchell P, Cumming RG (1999) Possible associations between computed tomography scan and cataract: the Blue Mountains Eye Study. Am J Public Health 89:1864–1866

    Article  Google Scholar 

  • Hsieh WA, Lin IF, Chang WP, Chen WL, Hsu YH, Chen MS (2010) Lens opacities in young individuals long after exposure to protracted low-dose-rate gamma radiation in 60Co-contaminated buildings in Taiwan. Radiat Res 173:197–204

    Article  Google Scholar 

  • ICRP (2007) The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP 37:1–332

    Google Scholar 

  • ICRP (2011) Statement on tissue reactions

  • Jacob S, Michel M, Spaulding C, Boveda S, Bar O, Brezin AP, Streho M, Maccia C, Scanff P, Laurier D, Bernier MO (2010) Occupational cataracts and lens opacities in interventional cardiology (O’CLOC study): are X-Rays involved? Radiation-induced cataracts and lens opacities. BMC Public Health 10:537

    Article  Google Scholar 

  • Jacobson BS (2005) Cataracts in retired actinide-exposed radiation workers. Radiat Prot Dosim 113:123–125

    Article  Google Scholar 

  • Jones JA, McCarten M, Manuel K, Djojonegoro B, Murray J, Feiversen A, Wear M (2007) Cataract formation mechanisms and risk in aviation and space crews. Aviat Space Environ Med 78:A56–A66

    Article  Google Scholar 

  • Kerr JD, Solomon DL (1976) The Epicenter of Nagasaki Weapon: a reanalysis of available data with recommended values. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Kim KP, Miller DL (2009) Minimising radiation exposure to physicians performing fluoroscopically guided cardiac catheterisation procedures: a review. Radiat Prot Dosim 133:227–233

    Article  Google Scholar 

  • Kim KP, Miller DL, Balter S, Kleinerman RA, Linet MS, Kwon D, Simon SL (2008) Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys 94:211–227

    Article  Google Scholar 

  • Klein BE, Klein R, Linton KL, Magli YL, Neider MW (1990) Assessment of cataracts from photographs in the Beaver Dam Eye Study. Ophthalmology 97:1428–1433

    Google Scholar 

  • Klein BE, Klein R, Linton KL, Franke T (1993) Diagnostic x-ray exposure and lens opacities: the Beaver Dam Eye Study. Am J Public Health 83:588–590

    Article  Google Scholar 

  • Klein BE, Klein RE, Moss SE (2000) Exposure to diagnostic x-rays and incident age-related eye disease. Ophthalmic Epidemiol 7:61–65

    Google Scholar 

  • Kreisheimer M, Sokolnikov ME, Koshurnikova NA, Khokhryakov VF, Romanow SA, Shilnikova NS, Okatenko PV, Nekolla EA, Kellerer AM (2003) Lung cancer mortality among nuclear workers of the Mayak facilities in the former Soviet Union. An updated analysis considering smoking as the main confounding factor. Radiat Environ Biophys 42:129–135

    Article  Google Scholar 

  • Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, Akleyev A (2012) Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys 52:47–57

    Article  Google Scholar 

  • Kreuzer M, Schnelzer M, Tschense A, Walsh L, Grosche B (2010) Cohort profile: the German uranium miners cohort study (WISMUT cohort), 1946–2003. Int J Epidemiol 39:980–987

    Article  Google Scholar 

  • Kreuzer M, Dufey F, Sogl M, Schnelzer M, Walsh L (2013) External gamma radiation and mortality from cardiovascular diseases in the German WISMUT uranium miners cohort study, 1946–2008. Radiat Environ Biophys 52:37–46

    Article  Google Scholar 

  • Lipman RM, Tripathi BJ, Tripathi RC (1988) Cataracts induced by microwave and ionizing radiation. Surv Ophthalmol 33:200–210

    Article  Google Scholar 

  • Mares V, Maczka T, Leuthold G, Rühm W (2009) Air crew dosimetry with a new version of EPCARD. Radiat Prot Dosim 136:262–266

    Article  Google Scholar 

  • Merriam GR Jr, Focht EF (1962) A clinical and experimental study of the effect of single and divided doses of radiation on cataract production. Trans Am Ophthalmol Soc 60:35–52

    Google Scholar 

  • Merriam GR Jr, Worgul BV (1983) Experimental radiation cataract–its clinical relevance. Bull N Y Acad Med 59:372–392

    Google Scholar 

  • Milacic S (2009) Risk of occupational radiation-induced cataract in medical workers. Med Lav 100:178–186

    Google Scholar 

  • Minamoto A, Taniguchi H, Mishima HK, Amemiya T, Nakashima E, Neriishi K, Hida A, Fujiwara S, Suzuki G, Akahoshi M (2000) Ophthalmologic study of atomic bomb survivors. Radiation Effects Research Foundation, Hiroshima

    Google Scholar 

  • Minamoto A, Taniguchi H, Yoshitani N, Mukai S, Yokoyama T, Kumagami T, Tsuda Y, Mishima HK, Amemiya T, Nakashima E, Neriishi K, Hida A, Fujiwara S, Suzuki G, Akahoshi M (2004) Cataract in atomic bomb survivors. Int J Radiat Biol 80:339–345

    Article  Google Scholar 

  • Mrena S, Kivelä T, Kurttio P, Auvinen A (2011) Lens opacities among physicians occupationally exposed to ionizing radiation—a pilot study in Finland. Scand J Work Environ Health 37:237–243

    Article  Google Scholar 

  • Nakashima E, Neriishi K, Minamoto A (2006) A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis. Health Phys 90:154–160

    Article  Google Scholar 

  • Nefzger MD, Miller RJ, Fujino T (1969) Eye findings in atomic bomb survivors of Hiroshima and Nagasaki: 1963–1964. Am J Epidemiol 89:129–138

    Google Scholar 

  • Neriishi K, Nakashima E, Minamoto A, Fujiwara S, Akahoshi M, Mishima HK, Kitaoka T, Shore RE (2007) Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold. Radiat Res 168:404–408

    Article  Google Scholar 

  • Neriishi K, Yokoyama T, Takamatsu M, Kumagami T, Uematsu M, Tsuiki E, Minamoto A, Kiuchi Y, Kitaoka T, Nakashima E, Hida A, Fujiwara S, Akahoshi M (2010) Ophthalmologic follow-up study in atomic-bomb survivors (Addendum to RP 3–00). Radiation Effects Research Foundation, Hiroshima

    Google Scholar 

  • Nicholas JS, Butler GC, Lackland DT, Tessier GS, Mohr LC Jr, Hoel DG (2001) Health among commercial airline pilots. Aviat Space Environ Med 72:821–826

    Google Scholar 

  • Otake M, Schull WJ (1991) A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. Radiation cataract. J Radiat Res (Tokyo) 32(Suppl):283–293

    Article  Google Scholar 

  • Rafnsson V, Olafsdottir E, Hrafnkelsson J, Sasaki H, Arnarsson A, Jonasson F (2005) Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study. Arch Ophthalmol 123:1102–1105

    Article  Google Scholar 

  • Rastegar N, Eckart P, Mertz M (2002) Radiation-induced cataract in astronauts and cosmonauts. Graefes Arch Clin Exp Ophthalmol 240:543–547

    Article  Google Scholar 

  • Rehani MM, Vano E, Ciraj-Bjelac O, Kleiman NJ (2011) Radiation and cataract. Radiat Prot Dosim 147:300–304

    Article  Google Scholar 

  • Robman L, Taylor H (2005) External factors in the development of cataract. Eye (Lond) 19:1074–1082

    Article  Google Scholar 

  • Shore RE, Neriishi K, Nakashima E (2010) Epidemiological studies of cataract risk at low to moderate radiation doses: (Not) seeing is believing. Radiat Res 174:889–894

    Article  Google Scholar 

  • Sparrow JM, Bron AJ, Brown NA, Ayliffe W, Hill AR (1986) The oxford clinical cataract classification and grading system. Int Ophthalmol 9:207–225

    Article  Google Scholar 

  • Strahlenschutzkommission (2009) Radiation-induced cataracts. Strahlenschutzkommission, Bonn

    Google Scholar 

  • Thylefors B, Chylack LT Jr, Konyama K, Sasaki K, Sperduto R, Taylor HR, West S (2002) A simplified cataract grading system. Ophthalmic Epidemiol 9:83–95

    Article  Google Scholar 

  • Vano E, Gonzalez L, Beneytez F, Moreno F (1998) Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br J Radiol 71:728–733

    Google Scholar 

  • Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M (2010) Radiation cataract risk in interventional cardiology personnel. Radiat Res 174:490–495

    Article  Google Scholar 

  • Vañó E, Kleiman NJ, Durán A, Rehani M, Echeverri D, Cabrera M (2010) Risk for radiation cataract in interventional cardiology personnel. Radiat Res 174:490–495

    Article  Google Scholar 

  • Wegener A, Laser-Junga H (2009) Photography of the anterior eye segment according to Scheimpflug’s principle: options and limitations—a review. Clin Experiment Ophthalmol 37:144–154

    Article  Google Scholar 

  • West S (2007) Epidemiology of cataract: accomplishments over 25 years and future directions. Ophthalmic Epidemiol 14:173–178

    Article  Google Scholar 

  • West SK, Valmadrid CT (1995) Epidemiology of risk factors for age-related cataract. Surv Ophthalmol 39:323–334

    Article  Google Scholar 

  • Wilde G, Sjostrand J (1997) A clinical study of radiation cataract formation in adult life following gamma irradiation of the lens in early childhood. Br J Ophthalmol 81:261–266

    Article  Google Scholar 

  • Worgul BV, Kundiev Y, Likhtarev I, Sergienko N, Wegener A, Medvedovsky CP (1996) Use of subjective and nonsubjective methodologies to evaluate lens radiation damage in exposed populations—an overview. Radiat Environ Biophys 35:137–144

    Article  Google Scholar 

  • Worgul BV, Kundiyev YI, Sergiyenko NM, Chumak VV, Vitte PM, Medvedovsky C, Bakhanova EV, Junk AK, Kyrychenko OY, Musijachenko NV, Shylo SA, Vitte OP, Xu S, Xue X, Shore RE (2007) Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res 167:233–243

    Article  Google Scholar 

  • Yamada M, Wong FL, Fujiwara S, Akahoshi M, Suzuki G (2004) Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat Res 161:622–632

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Pfeiffer, Priv.-Doz. Dr. Voßmerbäumer, Prof. Düber, Prof. Müller-Forell, Prof. Kampmann, Dr. Franz (University Medical Center Mainz) and Dr. Wegener (University Eye Hospital Bonn) for their helpful information on cataract assessment as well as interventional radiology procedures and dose registration, to Dr. Frasch and Dr. Kammerer (German Radiation Protection Register) for additional information, and to Priv.-Doz. Dr. Kreuzer and Dr. Schnelzer (German Federal Office for Radiation Protection) and their colleagues, Dr. Jacob (IRSN, France), and Dr. Petoussi-Henss (Helmholtz Center Munich, Germany) for the fruitful discussions. This work was supported by the German Federal Office for Radiation Protection, contract 3609S30004. Kazuo Neriishi received partial support from the Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This study did not involve any contact to patients or other study subjects, nor did it use data from individuals. Therefore, it did not require ethical approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaël P. Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, G.P., Scheidemann-Wesp, U., Samkange-Zeeb, F. et al. Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies. Radiat Environ Biophys 52, 303–319 (2013). https://doi.org/10.1007/s00411-013-0477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-013-0477-6

Keywords

Navigation