Skip to main content
Log in

Inter-comparison of population models for the calculation of radiation dose effects on wildlife

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

An inter-comparison of five models designed to predict the effect of ionizing radiation on populations of non-human wildlife, performed under the IAEA EMRAS II programme, is presented and discussed. A benchmark scenario ‘Population response to chronic irradiation’ was developed in which stable generic populations of mice, hare/rabbit, wolf/wild dog and deer were modelled as subjected to chronic low-LET radiation with dose rates of 0–5 × 10−2 Gy day−1 in increments of 10−2 Gy day−1. The duration of exposure simulations was 5 years. Results are given for the size of each surviving population for each of the applied dose rates at the end of the 1st to 5th years of exposure. Despite the theoretical differences in the modelling approaches, the inter-comparison allowed the identification of a series of common findings. At dose rates of about 10−2 Gy day−1 for 5 years, the survival of populations of short-lived species was better than that of long-lived species: significant reduction in large mammals was predicted whilst small mammals survive at 80–100 % of the control. Dose rates in excess of 2 × 10−2 Gy day−1 for 5 years produced considerable reduction in all populations. From this study, a potential relationship between higher reproduction rates and lower radiation effects at population level can be hypothesized. The work signals the direction for future investigations to validate and improve the predictive ability of different population dose effects models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev VV, Kryshev II, Sazykina TG (1992) Physical and mathematical modelling of ecosystems. Gidrometeoizdat, St. Petersburg 367 pp

    Google Scholar 

  • Alonzo F, Hertel-Aas T, Gilek M, Gilbin R, Oughton DH, Garnier-Laplace J (2008) Modelling the propagation of effects of chronic exposure to ionising radiation from individuals to populations. J Environ Radioact 99:1464–1473

    Article  Google Scholar 

  • AnAge (2012) The animal ageing and longevity database. A database of ageing and life history in animals, including extensive longevity records. Available online: http://genomics.senescence.info/species. Accessed 15 February 2012

  • Andersson P, Garnier-Laplace J, Beresford N, Copplestone D, Howard B, Howe P, Oughton D, Whitehouse P (2009) Protection of the environment from ionising radiation in a regulatory context (PROTECT): proposed numerical benchmark values. J Environ Radioact 100:1100–1108

    Article  Google Scholar 

  • Bartell SM, Gardner RH, O’Neill RV (1992) Ecological risk estimation. Lewis Publishers, Boca Raton

    Google Scholar 

  • Beresford NA, Brown J, Copplestone D, Garnier-Laplace J, Howard B, Larsson C-M, Oughton D, Pröhl G, Zinger I (2007) D-ERICA: An integrated approach to the assessment and management of environmental risks from ionising radiation. A deliverable of the ERICA project FI6R-CT-2004-508847. Swedish Radiation Protection Authority (SSI). Stockholm. Available via https://wiki.ceh.ac.uk/download/attachments/115017395/D-Erica.pdf?version=1. Accessed 04 May 2011

  • Beresford N, Hosseini A, Brown JE, Cailes C, Copplestone D, Barnett CL, Beaugelin-Seiller K (2008a) Evaluation of approaches for protecting the environment from ionising radiation in a regulatory context. PROTECT—Protection of the Environment from Ionising Radiation in a Regulatory Context. Deliverable 4 for EC-project No FI6R-036425. Available from: http://nora.nerc.ac.uk/5150/1/PROTECTWP2deliverableFinal.pdf. Accessed 01 June 2012

  • Beresford NA, Gaschak S, Barnett CL, Howard BJ, Chizhevsky I, Strømman G, Oughton DH, Wright SM, Maksimenko A, Copplestone D (2008b) Estimating the exposure of small mammals at three sites within the Chernobyl exclusion zone—a test application of the ERICA Tool. J Environ Radioact 99(9):1496–1502

    Article  Google Scholar 

  • Bergerud AT (1988) Caribou, wolves and man. Trends Ecol Evol 3(3):68–72

    Article  Google Scholar 

  • Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky A (2008) The ERICA tool. J Environ Radioact 99(9):1371–1383

    Article  Google Scholar 

  • Caswell N (2001) Matrix population models: construction, analysis, and interpretation. Sinauer Associates, Sunderland

    Google Scholar 

  • Chandler GT, Cary TL, Bejarano AC, Pender J, Ferry JL (2004) Population consequences of Fipronil and degradates to copepods at field concentrations: an integration of life cycle testing with Leslie matrix population modeling. Environ Sci Technol 38:6407–6414

    Article  Google Scholar 

  • Citra MJ (1997) Modelmaker 3.0 for Windows. J Chem Inf Comput Sci 37(6):1198–1200

    Article  Google Scholar 

  • Copplestone D, Bielby S, Jones SR, Patton D, Daniel CP, Gize I (2001) Impact assessment of ionising radiation on wildlife. R&D Publication 128 Environment Agency, Bristol

    Google Scholar 

  • Copplestone D, Wood MD, Bielby S, Jones SR, Vives i Batlle J, Beresford NA (2003) Habitat regulations for Stage 3 assessments: radioactive substances authorisations. R&D Technical Report P3–101/SP1a. Environment Agency, Bristol, p 100

    Google Scholar 

  • Copplestone D, Wood MD, Merrill PC, Allott R, Jones SR, Vives i Batlle J, Beresford NA, Zinger I (2004) Impact assessment of ionising radiation on wildlife: meeting the requirements of the EU birds and habitats directives. Radioprotection 40(1):S893–S898

    Google Scholar 

  • Copplestone D, Hingston JL, Real A (2008) The development and purpose of the FREDERICA radiation effects database. J Environ Radioact 99:1456–1463

    Article  Google Scholar 

  • Doi M, Kawaguchi I, Tanaka N, Fuma S, Ishii N, Miyamoto K, Takeda H, Kawabata Z (2005) Model ecosystem approach to estimate community level effects of radiation. Radioprotection 40(1):S913–S919

    Article  Google Scholar 

  • Fancy SG, Whitten KR, Russell DE (1994) Demography of the Porcupine caribou herd, 1983–1992. Can J Zool 72:840–846

    Article  Google Scholar 

  • Forbes VE, Calow P (2002) Population growth rate as a basis for ecological risk assessment of toxic chemicals. Phil Trans R Soc Lond Ser B Biol Sci 357(1425):1299–1306

    Google Scholar 

  • FREDERICA (2006) FREDERICA radiation effects database. Available from: http://www.frederica-online.org/mainpage.asp. Accessed 19 March 2012

  • Gaillard JM, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol Evol 13:58–63

    Article  Google Scholar 

  • Galic N, Hommen U, Hans Baveco JM, Van Den Brink PJ (2010) Potential application of population models in the European ecological risk assessment of chemicals. II. Review of models and their potential to address environmental protection aims. Integr Environ Assess Manag 6(3):338–360

    Article  Google Scholar 

  • Gambino JJ, Faulkenberry BH, Sunde PB (1968) Survival studies on rodents exposed to reactor fast neutron radiation. Radiat Res 35(3):668–680

    Article  Google Scholar 

  • Garnier-Laplace J, Della-Vedova C, Gilbin R, Copplestone D, Hingston JL, Ciffroy P (2006) First Derivation of predicted-no-effect values for freshwater and terrestrial ecosystems exposed to radioactive substances. Environ Sci Technol 40:6498–6505

    Article  Google Scholar 

  • Garnier-Laplace J, Della-Vedova C, Andersson P, Copplestone D, Cailes C, Beresford NA, Howard BJ, Howe P, Whitehouse P (2010) A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances. J Radiol Prot 30(2):215–233

    Article  Google Scholar 

  • Golley FB, Gentry JB, Menhinick EF, Carmon JL (1965) Response of wild rodents to acute gamma radiation. Radiat Res 24:350–356

    Article  Google Scholar 

  • Haefner JW (2005) Modeling biological systems: principles and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • IAEA (2005) Protection of the environment from the effects of ionizing radiation. In: Proc. IAEA International Conference on Protection of the Environment from the Effects of Ionising Radiation, 6–10 October 2003, Stockholm, Sweden. IAEA CN109/37, International Atomic Energy Agency, Vienna

  • ICRP (2003) A framework for assessing the impact of ionising radiation on non-human species. ICRP Publication 91. Annals of the ICRP 33(3). Pergamon Press, Oxford

    Google Scholar 

  • ICRP (2007) Recommendations of the International Commission on Radiological Protection. ICRP Publication 103 Annals of the ICRP 37 (2–3). Pergamon Press, Oxford

    Google Scholar 

  • ICRP (2008) Environmental protection—the concept and use for reference animals and plants. ICRP Publication 108, Annals of the ICRP 38(4–6):76

    Google Scholar 

  • Jørgensen SE, Nielsen SN, Jørgensen LA (1991) Handbook of ecological parameters and ecotoxicology. Elsevier, New York

    Google Scholar 

  • Kajin M, Cerqueira R, Vieira MV, Gentile R (2008) Nine-year demography of the black-eared opossum Didelphis aurita (Didelphimorphia: Didelphidae) using life tables. Rev bras zool 25(2):206–213

    Article  Google Scholar 

  • Kappos A, Pohlit W (1972) Cybernetic model for radiation reactions in living cells. Int J Radiat Biol 22:51–65

    Article  Google Scholar 

  • Karels TJ, Byrom AE, Boonstra R, Krebs CJ (2000) The interactive effects of food and predators on reproduction and overwinter survival of Artic ground squirrels. J Animal Ecol 69:235–247

    Article  Google Scholar 

  • Keum D-K, Jun I, Lim K-M, Choi Y-H (2011) External dose conversion coefficients to assess the radiological impact of an environmental radiation on aquatic and terrestrial animals. Prog Nucl Sci Technol 1:368–371

    Google Scholar 

  • King CM, Flux M, Innes JG, Fitzgerald BM (1996) Population biology of small mammals in Pureora Forest Park. 1. Carnivores (Mustela Erminea, M. Furo, M. Nivalis and Felis Catus). New Zeal J Ecol 20:241–251

    Google Scholar 

  • Klok C, de Roos AM (1996) Population level consequences of toxicological influences on individual growth and reproduction in Lumbricus rubellus (Lumbricidae, Oligochaeta). Ecotoxicol Environ Saf 33:118–127

    Google Scholar 

  • Kovach SD, Collins GH, Hinkes MT, Denton JW (2006) Reproduction and survival of brown bears in southwest Alaska, USA. Ursus 17:16–29

    Article  Google Scholar 

  • Kryshev AI, Sazykina TG, Badalian KD (2006) Mathematical simulation of dose-effect relationships for fish eggs exposed chronically to ionizing radiation. Radiat Environ Biophys 45(3):195–201

    Article  Google Scholar 

  • Kryshev AI, Sazykina TG, Sanina KD (2008) Modelling of effects due to chronic exposure of a fish population to ionizing radiation. Radiat Environ Biophys 47(1):121–129

    Article  Google Scholar 

  • Laurie J, Orr JS, Foster CJ (1972) Repair processes and cell survival. Brit J Radiol 45:362–368

    Article  Google Scholar 

  • Loison A, Gaillard JM, Houssin H (1994) New insight on survivorship of female chamois (Rupicapra rupicapra) from observation of marked animals. Can J Zool 72:591–597

    Article  Google Scholar 

  • Massarin S, Alonzo F, Garcia-Sanchez L, Gilbin R, Garnier-Laplace J, Poggiale J-C (2010) Effects of chronic uranium exposure on life history and physiology of Daphnia magna over three successive generations. Aquat Toxicol 99:309–319

    Article  Google Scholar 

  • McElligott AG, Altwegg R, Hayden TJ (2002) Age-specific survival and reproductive probabilities: evidence for senescence in male fallow deer (Dama dama). Proc R Soc Lond 269:1129–1137

    Article  Google Scholar 

  • Mihok S (2004) Chronic exposure to gamma radiation of wild populations of meadow voles (Microtus pennsylvanicus). J Environ Radioact 75(3):233–266

    Article  MathSciNet  Google Scholar 

  • Monte L (2009) Predicting the effects of ionising radiation on ecosystems by a generic model based on the Lotka-Volterra equations. J Environ Radioact 100(6):477–483

    Article  Google Scholar 

  • Nedveckaite T, Filistovic V, Marciulioniene D, Prokoptchuk N, Gudelis A, Plukiene R, Remeikis V, Vives I, Batlle J (2010) LIETDOS-BIO approach to the assessment of non-human species exposure to ionizing radiation. Lith J Phys 50(1):151–160

    Article  Google Scholar 

  • Norris WP, Fritz TE, Rehfeld CE, Poole CM (1968) The response of the beagle dog to cobalt-60 gamma radiation: determination of the LD50(30) and description of associated changes. Radiat Res 35:681–708

    Article  Google Scholar 

  • Nowak S, Mysłajek RW, Jędrzejewska B (2008) Density and demography of wolf, Canis lupus population in the western-most part of the Polish Carpathian Mountains, 1996–2003. Folia Zool 57:392–402

    Google Scholar 

  • Pennington DW (2003) Extrapolating ecotoxicological measures from small data sets. Ecotoxicol Environ Saf 56(2):238–250

    Google Scholar 

  • Pryor WH, Glenn WG, Hardy KA (1967) The gamma radiation LD 50(30) for the rabbit. Radiat Res 30(3):483–487

    Article  Google Scholar 

  • Rigas ML (2000) Software review: modelmaker 4.0. Risk Anal 20(4):543–544

    Article  MathSciNet  Google Scholar 

  • Sasser LB, Bell MC, West JL (1971) Simulated fallout radiation effects on livestock. In: Benson DW, Sparraw AH (eds) Survival of food crops and livestock in the event of nuclear war. Brookhaven National Laboratory, Upton, pp 193–207

    Google Scholar 

  • Saunders G, McIlroy J, Kay B, Gifford E, Berghout M, Van De Ven R (2002) Demography of foxes in central-western New South Wales, Australia. Mammalia 66:247–257

    Article  Google Scholar 

  • Sazykina TG, Kryshev AI (2003a) EPIC database on the effects of chronic radiation in fish: Russian/FSU data. J Environ Radioact 68(1):65–87

    Article  Google Scholar 

  • Sazykina TG, Kryshev II (2003b) Effects of ionising radiation on terrestrial animals: Dose-effects relationships. In: Proceedings of the international conference on the protection of the environment from the effects of ionizing radiation. Contributed papers. Stockholm, Sweden 6–10 October 2003, pp 95–97

  • Sazykina T, Kryshev II (2006) Radiation effects in wild terrestrial vertebrates—the EPIC collection. J Environ Radioact 88:11–48

    Article  Google Scholar 

  • Sazykina TG, Kryshev AI (2012) Radiation effects in generic populations inhabiting a limiting environment. Radiat Environ Biophys 51(2):215–221

    Article  Google Scholar 

  • Sazykina TG, Alekseev VV, Kryshev AI (2000) The self-organization of trophic structure in ecosystem models: the succession phenomena, trigger regimes and hysteresis. Ecol Model 133:83–94

    Article  Google Scholar 

  • Sazykina TG, Kryshev AI, Sanina KD (2009) Non-parametric estimation of thresholds for radiation effects in vertebrate species under chronic low-LET exposures. Radiat Environ Biophys 48:391–404

    Article  Google Scholar 

  • Schoen R (2006) Dynamic population models the springer series on demographic methods and population analysis, vol 17. Springer, Berlin

    Google Scholar 

  • Stabbin MG (2007) Biological effects of radiation (Chapter 6). In: Radiation protection and dosimetry—an introduction to health physics. Springer, Berlin

  • UNSCEAR (1982) Ionizing radiation: sources and biological effects. United Nations scientific committee on the effects of atomic radiation report to the general assembly; Annex J: Non-stochastic effects of irradiation; Annex K: Radiation-induced life shortening, New York

  • USDOE (2002) A graded approach for evaluating radiation doses to aquatic and terrestrial biota. Technical Standard DOE-STD-1153-2002. Department of Energy, Washington

  • Vardon MJ, Tidemann CR (2000) The black-flying fox (Pteropus alecto) in north Australia: juvenile mortality and longevity. Aust J Zool 48:91–97

    Article  Google Scholar 

  • Verhulst P-F (1838) Notice sur la loi que la population poursuit dans son accroissement. Corresp Math Phys 10:113–121

    Google Scholar 

  • Verhulst P-F (1845) Recherches mathématiques sur la loi d’accroissement de la population. Nouv Mém Acad Roy Sci Bell Lett Brux 18:1–42

    Google Scholar 

  • Vives i Batlle J (2012) Dual age class population model to assess radiation dose effects to non-human biota populations. Radiat Environ Biophys. doi:10.1007/s00411-012-0420-2

    Google Scholar 

  • Vives i Batlle J, Wilson RC, Watts SJ, McDonald P, Jones SR, Vives-Lynch SM, Craze A (2009) Approach to the assessment of risk from chronic radiation to populations of European lobster, Homarus gammarus (L). Radiat Environ Biophys 49(1):67–85

    Article  Google Scholar 

  • Vives i Batlle J, Barnett CL, Beaugelin-Seiller K, Beresford NA, Copplestone D, Horyna J, Hosseini A, Johansen M, Kamboj S, Keum D-K, Newsome L, Olyslaegers G, Vandenhove H, Vives Lynch S, Wood M (2011) Absorbed dose conversion coefficients for non-human biota: an extended inter-comparison of data. Radiat Environ Biophys 50(2):231–251

    Article  Google Scholar 

  • Von Zallinger C, Tempel K (1998) The physiologic response of domestic animals to ionizing radiation: a review. Vet Radiol Ultrasound 39(6):495–503

    Article  Google Scholar 

  • Wabakken P, Sand H, Liberg O, Bjärvall A (2001) The recovery, distribution, and population dynamics of wolves on the Scandinavian peninsula, 1978–1998. Can J Zool 79:710–725

    Article  Google Scholar 

  • Wilson RC, Vives i Batlle J, Watts SJ, McDonald P, Jones SR, Vives-Lynch SM, Craze A (2010) Approach to the assessment of risk from chronic radiation to populations of phytoplankton and zooplankton. Radiat Environ Biophys 49(1):87–95

    Article  Google Scholar 

  • Wismer DA, Garisto NC, Bajurny FJ (2005) Application of ecological risk assessment to establish non-human environmental protection at nuclear generating stations in Ontario, Canada. Radioprotection 1(40):695–700

    Article  Google Scholar 

  • Woodhead DS (2003) A possible approach for the assessment of radiation effects on populations of wild organisms in radionuclide-contaminated environments? J Environ Radioact 66(1–2):181–213

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the IAEA for organizing the EMRAS II programme, most especially the scientific secretary Sergey Fesenko. We also wish to acknowledge the working group leaders Tom Hinton of the Biota Dose Effects Modeling Group and Tatiana Sazykina of the Population Modelling and Alternative Methods Sub-Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Vives i Batlle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vives i Batlle, J., Sazykina, T.G., Kryshev, A. et al. Inter-comparison of population models for the calculation of radiation dose effects on wildlife. Radiat Environ Biophys 51, 399–410 (2012). https://doi.org/10.1007/s00411-012-0430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-012-0430-0

Keywords

Navigation