Skip to main content
Log in

Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Copper (Cu) isotopic analyses were performed on a set of samples from the Laacher See tephra (LST) (Eifel, Germany) to investigate whether Cu isotopes are fractionated during extreme magma differentiation and degassing. The LST represents a continuous fractional crystallization series from parental basanite through mafic to highly differentiated phonolites. Samples analyzed here include phonolites of variable degrees of differentiation, phonolite–basanite hybrid rocks formed by mixing basanite and phonolite magmas, and basanite-derived mega-crystals (i.e., clinopyroxene, amphibole, phlogopite). In addition, we analyzed a series of mafic parental lavas from surrounding volcanic centers to constrain the Cu isotopic features of the Eifel mantle. Mafic phonolites show strong depletion in Cu compared to their parental basanites from ~50 to ~3 ppm, indicating sulfide fractionation during the basanite-to-phonolite differentiation. Mass balance calculations, based on the most Cu-rich hybrid rock (δ65Cu = −0.21 ‰, [Cu] = 46.2 ppm), show that the parental basanite magmas have δ65Cu of ca. −0.21 ‰, lighter than those of the mafic phonolites (~0.11 ‰). This suggests that sulfide fractionation preferentially removes the lighter Cu isotope (63Cu) in S-saturated magmas. By contrast, all phonolites have a limited range of Cu contents (1.1 to 4.0 ppm) with no systematic variations with S, suggesting that Cu is not controlled by sulfide fractionation during the evolution of mafic to highly differentiated phonolites. The identical δ65Cu values (0.11 ± 0.03 ‰, 2SD, n = 10) of the phonolites, irrespective of highly diverse composition and extents of differentiation, indicate that fractional crystallization of silicates (e.g., plagioclase, sanidine, amphibole, pyroxene, olivine), Fe–Ti-oxides and phosphate (e.g., apatite) generates insignificant Cu isotope fractionation. The lack of correlations between δ65Cu and volatile contents (e.g., S, Cl) in the LST sequence implies that volcanic degassing causes no detectable Cu isotope fractionation of igneous rocks. Eifel basalts and mega-crystals have variable δ65Cu (−0.18 to 0.21 ‰) that are uncorrelated to MgO and Cu, suggesting that such variations were not caused by differentiation but reflect the Cu isotopic heterogeneity of the Eifel mantle source due to metasomatism by fluids derived from hydrothermally altered oceanic lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Wörner et al. (1987)

Fig. 2

The data are sourced from references (Wörner and Schmincke 1984a, Wörner et al. 1985, 1986, 1987)

Fig. 3

Data are taken from Tables 2 and 3

Fig. 4

Data are taken from Table 2

Fig. 5
Fig. 6

Data are taken from Table 2

Similar content being viewed by others

References

  • Albarède F (2004) The stable isotope geochemistry of copper and zinc. Rev Mineral Geochem 55:409–427

    Article  Google Scholar 

  • Archer C, Vance D (2004) Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes. J Anal At Spectrom 19:656–665

    Article  Google Scholar 

  • Baales M, Jöris O, Street M, Bittmann F, Weniger B, Wiethold J (2002) Impact of the Late Glacial eruption of the Laacher See volcano, central Rhineland, Germany. Quat Res 58:273–288

    Article  Google Scholar 

  • Balistrieri LS, Borrok DM, Wanty RB, Ridley WI (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim Cosmochim Acta 72:311–328

    Article  Google Scholar 

  • Berndt J, Holtz F, Koepke J (2001) Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano. Contrib Miner Petrol 140:469–486

    Article  Google Scholar 

  • Bigalke M, Weyer S, Wilcke W (2010) Copper isotope fractionation during complexation with insolubilized humic acid. Environ Sci Technol 44:5496–5502

    Article  Google Scholar 

  • Bogaard Pvd, Schmincke H-U (1985) Laacher See tephra: a widespread isochronous late Quaternary tephra layer in central and northern Europe. Geol Soc Am Bull 96:1554–1571

    Article  Google Scholar 

  • Bogaard PJF, Wörner G (2003) Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. J Petrol 44:569–602

    Article  Google Scholar 

  • Duda A, Schmincke HU (1978) Quaternary basanites, melilite nephelinites and tephrites from the Laacher See area (Germany). Neues Jahrbuch fuer Mineralogie Abhandlungen 132:1–33

    Google Scholar 

  • Etschmann BE, Liu W, Testemale D, Müller H, Rae NA, Proux O, Hazemann JL, Brugger J (2010) An in situ XAS study of copper(I) transport as hydrosulfide complexes in hydrothermal solutions (25–592 °C, 180–600 bar): speciation and solubility in vapor and liquid phases. Geochim Cosmochim Acta 74:4723–4739

    Article  Google Scholar 

  • Ehrlich S, Butler I, Halicz L, Rickard D, Oldroyd A, Matthews A (2004) Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chem Geol 209:259–269

    Article  Google Scholar 

  • Feige J (2011) Verteilung und Fraktionierung der Spurenelemente in Mineralen des Laacher See Phonoliths: Eine LA ICP-MS Studie. Master’s Thesis

  • Fellows SA, Canil D (2012) Experimental study of the partitioning of Cu during partial melting of Earth’s mantle. Earth Planet Sci Lett 337–338:133–143

    Article  Google Scholar 

  • Fernandez A, Borrok DM (2009) Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks. Chem Geol 264:1–12

    Article  Google Scholar 

  • Fujii T, Moynier F, Abe M, Nemoto K, Albarede F (2013) Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology. Geochim Cosmochim Acta 110:29–44

    Article  Google Scholar 

  • Fujii T, Moynier F, Blichert-Toft J, Albarède F (2014) Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim Cosmochim Acta 140:553–576

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61:1829–1846

    Article  Google Scholar 

  • Halter W, Heinrich C, Pettke T (2005) Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt inclusions. Miner Depos 39:845–863

    Article  Google Scholar 

  • Harms E, Schmincke HU (2000) Volatile composition of the phonolitic Laacher See magma (12,900 yr BP); implications for syn-eruptive degassing of S, F, Cl and H2O. Contrib Miner Petrol 138:84–98

    Article  Google Scholar 

  • Harms E, Gardner JE, Schmincke HU (2004) Phase equilibria of the Lower Laacher See tephra (East Eifel, Germany): constraints on pre-eruptive storage conditions of a phonolitic magma reservoir. J Volcanol Geotherm Res 134:135–148

    Article  Google Scholar 

  • He ZW, Huang F, Yu H, Xiao Y, Wang F, Li Q, Xia Y, Zhang X (2016) A flux-free fusion technique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS. Geostand Geoanal Res 40:5–21

    Article  Google Scholar 

  • Jenner FE, O’Neill HSC, Arculus RJ, Mavrogenes JA (2010) The Magnetite Crisis in the Evolution of Arc-related Magmas and the Initial Concentration of Au, Ag and Cu. J Petrol 51:2445–2464

    Article  Google Scholar 

  • Jouvin D, Weiss DJ, Mason TFM, Bravin MN, Louvat P, Zhao F, Ferec F, Hinsinger P, Benedetti MF (2012) Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes. Environ Sci Technol 46:2652–2660

    Article  Google Scholar 

  • Jung C, Jung S, Hoffer E, Berndt J (2006) Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany. J Petrol 47:1637–1671

    Article  Google Scholar 

  • Jung S, Pfänder JA, Brauns M, Maas R (2011) Crustal contamination and mantle source characteristics in continental intra-plate volcanic rocks: Pb, Hf and Os isotopes from central European volcanic province basalts. Geochim Cosmochim Acta 75:2664–2683

    Article  Google Scholar 

  • Kempton PD, Harmon RS, Stosch HG, Hoefs J, Hawkesworth CJ (1988) Open-system O-isotope behaviour and trace element enrichment in the sub-Eifel mantle. Earth Planet Sci Lett 89:273–287

    Article  Google Scholar 

  • Kimball BE, Mathur R, Dohnalkova AC, Wall AJ, Runkel RL, Brantley SL (2009) Copper isotope fractionation in acid mine drainage. Geochim Cosmochim Acta 73:1247–1263

    Article  Google Scholar 

  • Lee C-TA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Q-z Yin, Jin D (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336:64–68

    Article  Google Scholar 

  • Li WQ, Jackson SE, Pearson NJ, Alard O, Chappell BW (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem Geol 258:38–49

    Article  Google Scholar 

  • Li D-D, Liu S-A, Li S-G (2015) Copper isotope fractionation during adsorption onto kaolinite: experimental approach and applications. Chem Geol 396:74–82

    Article  Google Scholar 

  • Little SH, Sherman DM, Vance D, Hein JR (2014) Molecular controls on Cu and Zn isotopic fractionation in Fe–Mn crusts. Earth Planet Sci Lett 396:213–222

    Article  Google Scholar 

  • Liu S-A, Teng F-Z, Li S, Wei G-J, Ma J-L, Li D (2014a) Copper and iron isotope fractionation during weathering and pedogenesis: insights from saprolite profiles. Geochim Cosmochim Acta 146:59–75

    Article  Google Scholar 

  • Liu S-A, Li D, Li S, Teng F-Z, Ke S, He Y, Lu Y (2014b) High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS. J Anal At Spectrom 29:122–133

    Article  Google Scholar 

  • Liu XC, Xiong XY, Audétat A, Li Y, Song M, Li L, Sun W, Ding X (2014c) Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions. Geochim Cosmochim Acta 125:1–22

    Article  Google Scholar 

  • Liu S-A, Huang J, Liu J, Wörner G, Yang W, Tang Y-J, Chen Y, Tang L, Zheng J, Li S (2015a) Copper isotopic composition of the silicate Earth. Earth Planet Sci Lett 427:95–103

    Article  Google Scholar 

  • Liu XC, Xiong XY, Audétat A, Li Y (2015b) Partitioning of Cu between mafic minerals, Fe–Ti oxides and intermediate to felsic melts. Geochim Cosmochim Acta 151:1–22

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • Maher KC, Jackson S, Mountain B (2011) Experimental evaluation of the fluid-mineral fractionation of Cu istotopes at 250 °C and 300 °C. Chem Geol 286:229–239

    Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273

    Article  Google Scholar 

  • Mason TFD, Weiss DJ, Horstwood M, Parrish RR, Russell SS, Mullane E, Coles BJ (2004) High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 2. Correcting for mass discrimination effects. J Anal At Spectrom 19:218–226

    Article  Google Scholar 

  • Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley S (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim Cosmochim Acta 69:5233–5246

    Article  Google Scholar 

  • Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G (2009) Exploration potential of Cu isotope fractionation in porphyry copper deposits. J Geochem Explor 102:1–6

    Article  Google Scholar 

  • Mathur R, Dendas M, Titley S, Phillips A (2010) Patterns in the copper isotope composition of minerals in porphyry copper deposits in Southwestern United States. Econ Geol 105:1457–1467

    Article  Google Scholar 

  • Mathur R, Jin L, Prush V, Paul J, Ebersole C, Fornadel A, Williams JZ, Brantley S (2012) Cu isotopes and concentrations during weathering of black shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA). Chem Geol 304–305:175–184

    Article  Google Scholar 

  • Mertes H, Schmincke HU (1985) Mafic potassic lavas of the Quaternary West Eifel volcanic field. Contrib Mineral Petrol 89:330–345

    Article  Google Scholar 

  • Pekala M, Asael D, Butler IB, Matthews A, Rickard D (2011) Experimental study of Cu isotope fractionation during the reaction of aqueous Cu(II) with Fe(II) sulphides at temperatures between 40 and 200 °C. Chem Geol 289:31–38

    Article  Google Scholar 

  • Pfänder JA, Jung S, Münker C, Stracke A, Mezger K (2012) A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget–Evidence from continental basalts from Central Germany. Geochim Cosmochim Acta 77:232–251

    Article  Google Scholar 

  • Rempel KU, Liebscher A, Meixner A, Romer RL, Heinrich W (2012) An experimental study of the elemental and isotopic fractionation of copper between aqueous vapour and liquid to 450 °C and 400 bar in the CuCl–NaCl–H2O and CuCl–NaHS–NaCl–H2O systems. Geochim Cosmochim Acta 94:199–216

    Article  Google Scholar 

  • Savage PS, Chen H, Shofner G, Badro J, Moynier F (2013) The copper isotope composition of bulk Earth: a new paradox? Goldshmidt2013 Conferen Abstracts:2142

  • Savage PS, Harvey J, Moynier F (2014) Copper isotope heterogeneity in the lithospheric mantle. Goldschmidt2014 Conference Abstracts:2192

  • Savage PS, Moynier F, Chen H, Shofner G, Siebert J, Badro J, Puchtel IS (2015a) Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochem Perspect Lett 1:53–64

    Article  Google Scholar 

  • Savage PS, Moynier F, Harvey J, Burton K (2015b) The behaviour of copper isotopes during igneous processes. AGU 2015 Fall Meeting Abstract: V53B-3137

  • Schmincke HU (2007) The Quaternary volcanic fields of the east and west Eifel (Germany). In: Ritter JRR, Christensen UR (eds) Mantle plumes; a multidisciplinary approach. Springer, Berlin, pp 241–322

    Chapter  Google Scholar 

  • Seo JH, Lee SK, Lee I (2007) Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem Geol 243:225–237

    Article  Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2006) Copper partitioning in a melt–vapor–brine–magnetite–pyrrhotite assemblage. Geochim Cosmochim Acta 70:5583–5600

    Article  Google Scholar 

  • Toutain J-P, Sonke J, Munoz M, Nonell A, Polvé M, Viers J, Freydier R, Sortino F, Joron J-L, Sumarti S (2008) Evidence for Zn isotopic fractionation at Merapi volcano. Chem Geol 253:74–82

    Article  Google Scholar 

  • Vance D, Archer C, Bermin J, Perkins J, Statham PJ, Lohan MC, Ellwood MJ, Mills RA (2008) The copper isotope geochemistry of rivers and the oceans. Earth Planet Sci Lett 274:204–213

    Article  Google Scholar 

  • Wall AJ, Mathur R, Post JE, Heaney PJ (2011) Cu isotope fractionation during bornite dissolution: an in situ X-ray diffraction analysis. Ore Geol Rev 42:62–70

    Article  Google Scholar 

  • Weinstein C, Moynier F, Wang K, Paniello R, Foriel J, Catalano J, Pichat S (2011) Isotopic fractionation of Cu in plants. Chem Geol 286:266–271

    Google Scholar 

  • Witt-Eichschen G, Seck HA, Mezger K, Egiins SM, Altherr R (2003) Lithospheric mantle evolution beneath the Eifel (Germany): constraints from Sr–Nd–Pb isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths. J Petrol 44:1077–1095

    Article  Google Scholar 

  • Witt-Eickschen G, Kramm U (1998) Evidence for the multiple stage evolution of the subcontinental lithospheric mantle beneath the Eifel (Germany) from pyroxenite and composite pyroxenite/peridotite xenoliths. Contrib Mineral Petrol 131:258–272

    Article  Google Scholar 

  • Wörner G, Schmincke H-U (1984a) Mineralogical and chemical zonation of the Laacher See tephra sequence (East Eifel, W. Germany). J Petrol 25:805–835

    Article  Google Scholar 

  • Wörner G, Schmincke H-U (1984b) Petrogenesis of the zoned Laacher See tephra. J Petrol 25:836–851

    Article  Google Scholar 

  • Wörner G, Wright TL (1984) Evidence for magma mixing within the Laacher See magma chamber (East Eifel, Germany). J Volcanol Geotherm Res 22:301–327

    Article  Google Scholar 

  • Wörner G, Schmincke H-U, Schreyer W (1982) Crustal xenoliths from the Quaternary Wehr volcano (East Eifel). Neues Jahrbuch fuer Mineralogie Abhandlungen 1:29–55

    Google Scholar 

  • Wörner G, Beusen J-M, Duchateau N, Gijbels R, Schmincke H-U (1983) Trace element abundances and mineral/melt distribution coefficients in phonolites from the Laacher See Volcano (Germany). Contrib Mineral Petrol 84:152–173

    Article  Google Scholar 

  • Wörner G, Staudigel H, Zindler A (1985) Isotopic constraints on open system evolution of the Laacher See magma chamber (Eifel, West Germany). Earth Planet Sci Lett 75:37–49

    Article  Google Scholar 

  • Wörner G, Zindler A, Staudigel H, Schmincke H-U (1986) Sr, Nd, and Pb isotope geochemistry of Tertiary and Quaternary alkaline volcanics from West Germany. Earth Planet Sci Lett 79:107–119

    Article  Google Scholar 

  • Wörner G, Harmon RS, Hoefs J (1987) Stable isotope relations in an open magma system, Laacher See, Eifel (FRG). Contrib Mineral Petrol 95:343–349

    Article  Google Scholar 

  • Zhu XK, Guo Y, Williams RJP, O’Nions RK, Matthews A, Belshaw NS, Canters GW, de Waal EC, Weser U, Burgess BK, Salvato B (2002) Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett 200:47–62

    Article  Google Scholar 

Download references

Acknowledgment

J.H. thank D.D. Li and Y.W. Lv for help in the clean lab. This work is financially supported by Grants from the National Natural Science Foundation of China (NOs. 41573018, 41303015) to J.H and (NO. 4147301) to S.A.L. Thanks are due to Dr. Ryan Mathur and two anonymous reviewers for their constructive and thorough comments, which greatly improve this contribution. We also thank Dr. Jochen Hoefs for his efficient editorial handling work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Huang or Sheng-Ao Liu.

Additional information

Communicated by Jochen Hoefs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liu, SA., Wörner, G. et al. Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany). Contrib Mineral Petrol 171, 76 (2016). https://doi.org/10.1007/s00410-016-1282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1282-4

Keywords

Navigation