Skip to main content

Advertisement

Log in

Liquidus temperatures of komatiites and the effect of cooling rate on element partitioning between olivine and komatiitic melt

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Archean komatiites are the hottest magmas preserved on Earth and are thus unique probes of its thermal evolution. Estimating their eruption temperatures remains problematic, however, because the uppermost (A1, A2) zones of komatiite flows contain randomly oriented spinifex-textured olivines, indicative of rapid cooling and growth. Fe–Mg partitioning between olivine and assumed komatiitic liquid typically shows departures from equilibrium, extending towards higher \(K_{\text{D}}^{{{\text{Fe}}^{2 + } - {\text{Mg}}}}\). If these higher values are a disequilibrium effect, using them to calculate parental magma composition would lead to errors in estimated liquidus temperatures. In order to investigate this possibility, we have performed experiments on two komatiite compositions, the classic Barberton Aluminium Undepleted Komatiite (AUK) sample 49J (32.2 % MgO) and Munro AUK sample 422/95 (23 % MgO). Isothermal experiments to constrain phase equilibria on 49J at atmospheric pressure, between 1360 and 1600 °C at 1.7 log units below and 1.1 above the fayalite–magnetite–quartz (FMQ) buffer reveal a liquidus temperature (T liq) of 1616 °C, ~40 °C lower than a previous estimate. The \(K_{\text{D}}^{{\varSigma {\text{Fe}}{-}{\text{Mg}}}}\) ranges between 0.320 and 0.295 at FMQ − 1.7, with a slight negative dependence on temperature. To replicate the conditions that prevailed during the quenching of komatiites in their upper chill zones, experiments with a constant cooling rate at FMQ − 1.7 were performed on 422/95 (T liq = 1450 °C) at 0.5, 1.5, 2.5, 6.5 and 16 °C/min. Olivine morphology changes from euhedral to tabular at low cooling rates, hopper at intermediate, and skeletal and chain structures at high rates. Concurrently, the \(K_{\text{D}}^{{\Sigma {\text{Fe}}{-}{\text{Mg}}}}\) increases monotonically from an equilibrium value of 0.305 to 0.376 at 16 °C/min, reflecting the inability of unwanted cations to diffuse away from the growing olivine. The high \(K_{\text{D}}^{{\varSigma {\text{Fe}}{-}{\text{Mg}}}}\) between olivine and komatiitic liquid caused by rapid cooling accounts for the systematically lower Mg#s in spinifex olivines with respect to their euhedral counterparts in natural komatiites. The maximum MgO content of komatiite liquids in the Archean is revised upwards to 32 wt%, implying temperature excesses in Archean plumes relative to ambient mantle were greater than in their contemporary equivalents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbott D, Burgess L, Longhi J, Smith WHF (1994) An empirical thermal history of the Earth’s upper mantle. J Geophys Res 99(B7):13835–13850

    Article  Google Scholar 

  • Agee CB, Walker D (1990) Mineralogy and aluminum partitioning between olivine and ultrabasic silicate liquid to 6 GPa. Contrib Mineral Petrol 105(3):243–254

    Article  Google Scholar 

  • Aitken BG, Echeverría LM (1984) Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia. Contrib Mineral Petrol 86:94–105. doi:10.1007/BF00373714

    Article  Google Scholar 

  • Albarède F, Bottinga Y (1972) Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava. Geochim Cosmochim Acta 36:141–156. doi:10.1016/0016-7037(72)90003-8

    Article  Google Scholar 

  • Arndt NT (1976) Melting relations of ultramafic lavas (komatiites) at 1 atm and high pressure. Year B Carnegie Inst Wash 75:555–562

    Google Scholar 

  • Arndt NT (1986) Differentiation of komatiite flows. J Petrol 27:279–301

    Article  Google Scholar 

  • Arndt NT (2008) Komatiite. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Arndt NT, Nesbitt RW (1984) Magma mixing in komatiitic lavas from Munro Township. In: Kröner A, Hanson GN, Goodwin AM (eds) Archean geochemistry. Springer, Berlin, pp 99–114

    Chapter  Google Scholar 

  • Arndt NT, Naldrett AJ, Pyke DR (1977) Komatiitic and iron-rich tholeiitic lavas of Munro Township, northeast Ontario. J Petrol 18:319–369

    Article  Google Scholar 

  • Barnes SJ, Fiorentini ML (2012) Komatiite magmas and sulfide nickel deposits: a comparison of variably endowed Archean terranes. Econ Geol 107:755–780. doi:10.2113/econgeo.107.5.755

    Article  Google Scholar 

  • Barnes SJ, Lesher CM (2008) Physical volcanology of komatiites. In: Arndt NT, Lesher CM, Barnes SJ (eds) Komatiite. Cambridge University Press, Cambridge, pp 243–294. doi:10.1017/CBO9780511535550

    Google Scholar 

  • Barnes SJ, Lesher CM, Keays RR (1995) Geochemistry of mineralised and barren komatiites from the perseverance nickel deposit, Western Australia. Lithos 34:209–234

    Article  Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111. doi:10.1007/BF00712982

    Article  Google Scholar 

  • Berry AJ, O’Neill HSC, Scott DR, Foran GJ, Shelley JMG (2006) The effect of composition on Cr2+/Cr3+ in silicate melts. Am Mineral 91:1901–1908. doi:10.2138/am.2006.2097

    Article  Google Scholar 

  • Berry AJ, Danyushevsky LV, O’Neill HSC, Newville M, Sutton SR (2008) Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455:960–963. doi:10.1038/nature07377

    Article  Google Scholar 

  • Bianco AS, Taylor LA (1977) Applications of dynamic crystallization studies: Lunar olivine-normative basalts. In: Proceedings of Lunar and planetary science conference, vol 8, pp 1593–1610

  • Borisov A, Jones JH (1999) An evaluation of Re, as an alternative to Pt, for the 1 bar loop technique: an experimental study at 1400 °C. Am Mineral 84:1528–1534

    Article  Google Scholar 

  • Brandeis G, Jaupart C, Allegre CJ (1984) Nucleation, crystal growth and the thermal regime of cooling magmas. J Geophys Res 89(B12):10161–10177

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Bryan WB (1972) Morphology of quench crystals in submarine basalts. J Geophys Res 77:5812–5819. doi:10.1029/JB077i029p05812

    Article  Google Scholar 

  • Campbell IH (2003) Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Am J Sci 303:319–351. doi:10.2475/ajs.303.4.319

    Article  Google Scholar 

  • Campbell IH, Griffiths RW (2014) Did the formation of D″ cause the Archaean-Proterozoic transition? Earth Planet Sci Lett 388:1–8

    Article  Google Scholar 

  • Campbell IH, Jarvis GT (1984) Mantle convection and early crustal evolution. Precambrian Res 26:15–56

    Article  Google Scholar 

  • Castro JM, Cottrell E, Tuffen H, Logan AV, Kelley KA (2009) Spherulite crystallization induces Fe-redox redistribution in silicic melt. Chem Geol 268:272–280. doi:10.1016/j.chemgeo.2009.09.006

    Article  Google Scholar 

  • Cirlin EH, Taylor LA, Lofgren G (1985) Fe/Mg K D for olivine/liquid in chondrules: effects of cooling rate. Lunar Planet Sci XVI:133–134

    Google Scholar 

  • Condie KC (1985) Secular variation in the composition of basalts: an index to mantle evolution. J Petrol 26(3):545–563

    Article  Google Scholar 

  • Coogan LA, Saunders AD, Wilson RN (2014) Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chem Geol 368:1–10. doi:10.1016/j.chemgeo.2014.01.004

    Article  Google Scholar 

  • Dann J (2001) Vesicular komatiites, 3.5-Ga komati formation, Barberton greenstone belt, South Africa: inflation of submarine lavas and origin of spinifex zones. Bull Volcanol 63:462–481. doi:10.1007/s004450100164

    Article  Google Scholar 

  • Donaldson CH (1975) Calculated diffusion coefficients and the growth rate of olivine in a basalt magma. Lithos 8:163–174

    Article  Google Scholar 

  • Donaldson CH (1976) An experimental investigation of olivine morphology. Contrib Mineral Petrol 57:187–213. doi:10.1007/BF00405225

    Article  Google Scholar 

  • Donaldson CH (1979) An experimental investigation of the delay in nucleation of olivine in Mafic Magmas. Contrib Mineral Petrol 69:21–32. doi:10.1007/BF00375191

    Article  Google Scholar 

  • Donaldson CH (1982) Spinifex-textured komatiites: a review of textures, compositions and layering. In: Arndt NT, Nisbet EG (eds) komatiites. Allen & Unwin, London, pp 213–244

    Google Scholar 

  • Donaldson CH, Usselman TM, Williams RJ, Lofgren GE (1975) Experimental modeling of the cooling history of Apollo 12 olivine basalts. In: Proceedings of Lunar and planetary science conference, vol 6, pp 843–869

  • Duffy JA (1993) A review of optical basicity and its applications to oxidic systems. Geochim Cosmochim Acta 57:3961–3970. doi:10.1016/0016-7037(93)90346-X

    Article  Google Scholar 

  • Ertel W, O’Neill HSC, Sylvester PJ, Dingwell DB, Spettel B (2001) The solubility of rhenium in silicate melts: implications for the geochemical properties of rhenium at high temperatures. Geochim Cosmochim Acta 65:2161–2170

    Article  Google Scholar 

  • Faure F, Trolliard G, Nicollet C, Montel J-M (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Mineral Petrol 145:251–263. doi:10.1007/s00410-003-0449-y

    Article  Google Scholar 

  • Faure F, Arndt NT, Libourel G (2006) Formation of spinifex texture in komatiites: an experimental study. J Petrol 47(8):1591–1610

    Article  Google Scholar 

  • Filiberto J, Dasgupta R (2011) Fe2+–Mg partitioning between olivine and basaltic melts: applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth Planet Sci Lett 304:527–537

    Article  Google Scholar 

  • Ford CE, Russell DG, Craven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–266. doi:10.1093/petrology/24.3.256

    Article  Google Scholar 

  • Frost DJ, Wood BJ (1997) Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925–1650 C. Geochim Cosmochim Acta 61:1565–1574

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model Earth Planet. Sci Lett 271:123–134

    Google Scholar 

  • Green DH (1975) Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics. Geology 3:15–18. doi:10.1130/0091-7613(1975)3<15

    Article  Google Scholar 

  • Green DH, Nicholls IA, Viljoen MJ, Viljoen RP (1975) Experimental demonstration of the existence of peridotitic liquids in earliest Archean magmatism. Geology 3:11–14. doi:10.1130/0091-7613(1975)3<11

    Article  Google Scholar 

  • Grove TL, Bence AE (1979) Crystallization kinetics in a multiply saturated basalt magma: an experimental study of Luna 24 ferrobasalt. In: Proceedings of Lunar planetary science conference, vol 10, pp 439–478

  • Grove TL, Raudsepp M (1978) Effects of kinetics on the crystallization of quartz normative basalt 15597—an experimental study, In: Proceedings of Lunar and planetary science conference, vol 9. Pergamon Press Inc., Houston, pp 585–599

  • Hanson B, Jones JH (1998) The systematics of Cr3+ and Cr2+ partitioning between olivine and liquid in the presence of spinel. Am Mineral 83:669–684

    Article  Google Scholar 

  • Hergt JM, Chappell BW, McCulloch MT, McDougall I, Chivas AR (1989) Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. J Petrol 30:841–883. doi:10.1093/petrology/30.4.841

    Article  Google Scholar 

  • Herzberg C, Condie KC, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Article  Google Scholar 

  • Hill RET, Gole MJ, Barnes SJ (1988) Physical volcanology of komatiites, 1st edn. GSA (W.A. Division), Perth

    Google Scholar 

  • Hirschmann MM, Ghiorso MS (1994) Activities of nickel, cobalt, and manganese silicates in magmatic liquids and applications to olivine/liquid and to silicate/metal partitioning. Geochim Cosmochim Acta 58(19):4109–4126

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ, Turner JS, Arndt NT (1984) Emplacement and cooling of komatiite lavas. Nature 309:19–22

    Article  Google Scholar 

  • Jaeger JC (1964) Thermal effects of intrusions. Rev Geophys 2:443–466. doi:10.1029/RG002i003p00443

    Article  Google Scholar 

  • Jaeger JC (1968) Cooling and solidification of igneous rocks. In: Hess HH, Poldervaart A (eds) Basalts: the poldervaart treatise on Rocks of basaltic composition. Wiley, New York, pp 503–536

    Google Scholar 

  • Jambon A, Lussiez P, Clocchiatti R, Weisz J, Hernandez J (1992) Olivine growth rates in a tholeiitic basalt: an experimental study of melt inclusions in plagioclase. Chem Geol 96:277–287. doi:10.1016/0009-2541(92)90059-E

    Article  Google Scholar 

  • Jenner FE, O’Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosys 13: Q03003. http://dx.doi.org/10.1029/2011GC003890

  • Jenner FE, O’Neill HSC, Arculus RJ, Mavrogenes JA (2010) The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J Petrol 51:2445–2464. doi:10.1093/petrology/egq063

    Article  Google Scholar 

  • Kennedy AK, Lofgren GE, Wasserburg GJ (1993) An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth Planet Sci Lett 115:177–195. doi:10.1016/0012-821X(93)90221-T

    Article  Google Scholar 

  • Kirkpatrick RJ (1977) Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilaeua Volcano, Hawaii. Geol Soc Am Bull 88:78–84

    Article  Google Scholar 

  • Klemme S, O’Neill HSC (2000) The effect of Cr on the solubility of Al in orthopyroxene: experiments and thermodynamic modelling. Contrib Mineral Petrol 140:84–98

    Article  Google Scholar 

  • Köhler T, Brey GP (1990) Ca-exchange between olivine and clinopyroxene as a geothermobarometer calibrated from 2 to 60 kbar in primitive natural lherzolites. Geochim Cosmochim Acta 54:2375–2388

    Article  Google Scholar 

  • Korenaga J (2006) Archean geodynamics and the thermal evolution of the earth. In: Benn K, Mareschal J-C, Condie KC (eds) Archean geodynamics and environments. American Geophysical Union, Washington, pp 7–32

    Chapter  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92. doi:10.1007/BF00307328

    Article  Google Scholar 

  • Kress VC, Ghiorso MS (1995) Multicomponent diffusion in basaltic melts. Geochim Cosmochim Acta 7037:313–324

    Article  Google Scholar 

  • Kring DA, McKay GA (1984) Chemical gradients in glass adjacent to olivine in experimental charges and Apollo 15 green glass vitrophyres. Lunar Planet Sci 1:461–462

    Google Scholar 

  • Lahaye Y, Arndt NT (1996) Alteration of a komatiite flow from Alexo, Ontario, Canada. J Petrol 37:1261–1284. doi:10.1093/petrology/37.6.1261

    Article  Google Scholar 

  • Lee CTA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33

    Article  Google Scholar 

  • Li J-P, O’Neill HSC, Seifert F (1995) Subsolidus phase relations in the system MgO–SiO2–Cr–O in Equilibrium with Metallic Cr, and their significance for the petrochemistry of chromium. J Petrol 36:107–132

    Article  Google Scholar 

  • Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contrib Mineral Petrol 136:63–80. doi:10.1007/s004100050524

    Article  Google Scholar 

  • Lofgren GE (1989) Dynamic crystallization of chondrule melts of porphyritic olivine composition: textures experimental and natural. Geochim Cosmochim Acta 53:461–470

    Article  Google Scholar 

  • Lofgren GE, Grove TL, Brown RW, Smith DP (1979) Comparison of dynamic crystallization techniques on Apollo 15 quartz normative basalts. In: Proceedings of Lunar and planetary Science conference, vol 10, pp 423–438

  • Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794. doi:10.1093/petrology/egp053

    Article  Google Scholar 

  • Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe–Mg partitioning between Olivine and high-magnesian melts and the nature of hawaiian parental liquids. J Petrol 52:1243–1263. doi:10.1093/petrology/egq089

    Article  Google Scholar 

  • Matzen AK, Baker MB, Beckett JR, Stolper EM (2013) The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. J Petrol 54:2521–2545. doi:10.1093/petrology/egt055

    Article  Google Scholar 

  • McDonough WF, Danyushevsky LV (1995) Water and sulfur contents of melt inclusions from Archean komatiites. In: Transactions of the American geophysical union. p 266

  • Medard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844. doi:10.2138/am.2008.2842

    Article  Google Scholar 

  • Mullin JW (2001) Crystallization, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Mungall JE (2002) Empirical models relating viscosity and tracer diffusion in magmatic silicate melts. Geochim Cosmochim Acta 66:125–143

    Article  Google Scholar 

  • Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperatures. Geol Soc Am Bull 84:3563–3592

    Article  Google Scholar 

  • Mysen BO (1995) Experimental, in situ, high-temperature studies of properties and structure of silicate melts relevant to magmatic processes. Eur J Mineral 7:745–766

    Article  Google Scholar 

  • Naldrett AJ, Turner AR (1977) The geology and petrogenesis of a greenstone belt and related nickel sulfide mineralization at Yakabindie, Western Australia. Precambrian Res 5:43–103

    Article  Google Scholar 

  • Nesbitt RW, Sun S-S (1976) Geochemistry of Archaean spinifex-textured peridotites and magnesian and low-magnesian tholeiites. Earth Planet Sci Lett 31:433–453. doi:10.1016/0012-821X(76)90125-4

    Article  Google Scholar 

  • Nisbet EG (1982) The tectonic setting and petrogenesis of komatiites. In: Arndt NT, Nisbet EG (eds) Komatiites. George Allen and Unwin, London, pp 501–520

    Google Scholar 

  • Nisbet EG, Cheadle MJ, Arndt NT, Bickle MJ (1993) Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos 30:291–307

    Article  Google Scholar 

  • O’Neill HSC (2013) The effects of silicate melt composition and sulfur on the solubilities of PGEs in silicate melts. Min Mag 77(5):1872

    Google Scholar 

  • O’Neill HSC, Berry AJ (2006) Activity coefficients at low dilution of CrO, NiO and CoO in melts in the system CaO–MgO–Al2O3–SiO2 at 1400 C: using the thermodynamic behaviour of transition metal oxides in silicate melts to probe their structure. Chem Geol 231:77–89. doi:10.1016/j.chemgeo.2006.01.004

    Article  Google Scholar 

  • O’Neill C, Debaille V (2014) The evolution of Hadean-Eoarchean Geodynamics. Earth Planet Sci Lett Front 406:49–58

    Article  Google Scholar 

  • O’Neill HSC, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181

    Article  Google Scholar 

  • Pack A, Palme H (2003) Partitioning of Ca and Al between forsterite and silicate melt in dynamic systems with implications for the origin of Ca, Al-rich forsterites in primitive meteorites. Meteorit Planet Sci 38:1263–1281. doi:10.1111/j.1945-5100.2003.tb00312.x

    Article  Google Scholar 

  • Parman SW, Dann JC, Grove TL, de Wit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga komati formation, Barberton greenstone belt, South Africa. Earth Planet Sci Lett 150:303–323

    Article  Google Scholar 

  • Parman SW, Grove TL, Dann JC, de Wit MJ (2004) A subduction origin for komatiites and cratonic lithospheric mantle. South Afr J Geol 107:107–118

    Article  Google Scholar 

  • Pollack HN (1997) Thermal characteristics of the Archaean. In: deWit MJ, Ashwal LD (eds) Greenstone belts: Oxford monographs on geology and geophysics. Oxford University Press, Oxford, pp 223–232

    Google Scholar 

  • Pyke DR, Naldrett AJ, Eckstrand OR (1973) Archean ultramafic flows in Munro Township, Ontario. Geol Soc Am Bull 84:955–978. doi:10.1130/0016-7606(1973)84<955

    Article  Google Scholar 

  • Renner R, Nisbet EG, Cheadle MJ, Bickle MJ, Cameron WE (1994) Komatiite flows from the reliance formation, Belingwe Belt, Zimbabwe: I. Petrography and mineralogy. J Petrol 35:361–400

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Schreiber HD, Haskin LA (1976) Chromium in basalts: experimental determination of redox states and partitioning among synthetic silicate phases. In: Proceedings of Lunar and planetary science conference, vol 7, pp 1221–1259

  • Silver PG, Behn MD (2008) Intermittent plate tectonics? Science 319:85–88

    Article  Google Scholar 

  • Smith VG, Tiller WA, Rutter JW (1955) A mathematical analysis of solute redistribution during solidification. Can J Phys 33:723–745

    Article  Google Scholar 

  • Sossi PA, Eggins SM, Nesbitt RW, Nebel O, Hergt JM, Campbell IH, O’Neill HSC, Van Kranendonk MJ, Davies DR (2016) Petrogenesis and geochemistry of Archean komatiites. J Petrol 57(1):147–184

    Article  Google Scholar 

  • Stebbins JF (1995) Dynamics and structure of silicate and oxide melts; nuclear magnetic resonance studies. Rev Mineral Geochem 32:191–246

    Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—II. Phase equilibria. Geophys J Int 184(3):1180–1213

    Article  Google Scholar 

  • Stolz GW (1981) A petrographic and geochemical investigation of the Archaean volcanic succession in the vicinity of the scotia nickel deposit. PhD thesis, University of Adelaide

  • Swartzendruber LJ (1984) The Fe–Ir (Iron-Iridium) system. Bull Alloy Phase Diagr 5:48–52

    Article  Google Scholar 

  • Taylor LA, Cirlin EH (1986) Olivine/melt Fe/Mg K D’s < 0.3: rapid cooling of olivine-rich chondrules. Lunar Planet Sci XVII:879–880

    Google Scholar 

  • Thayer TP (1966) Serpentinization considered as a constant volume metasomatic process. Am Mineral 51:685–710

    Google Scholar 

  • Tiller WA, Jackson WA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during solidification of metals. Acta Metall 1:428–437

    Article  Google Scholar 

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39. doi:10.1007/s00410-004-0629-4

    Article  Google Scholar 

  • Tuff J, O’Neill HSC (2010) The effect of sulfur on the partitioning of Ni and other first-row transition elements between olivine and silicate melt. Geochim Cosmochim Acta 74:6180–6205. doi:10.1016/j.gca.2010.08.014

    Article  Google Scholar 

  • Turner JS, Huppert HE, Sparks RSJ (1986) Komatiites II: experimental and theoretical investigations of post-emplacement cooling and crystallization. J Petrol 27:397–437. doi:10.1093/petrology/27.2.397

    Article  Google Scholar 

  • Viljoen M, Viljoen R (1969a) The geology and geochemistry of the lower ultramafic unit of the Onverwacht Group and a proposed new class of igneous rocks. Geol Soc S Afr Spec Publ 2:55–86

    Google Scholar 

  • Viljoen M, Viljoen R (1969b) Evidence for the existence of a mobile extrusive peridotitic magma from the Komati formation of the Onverwacht group. Geol Soc S Afr Spec Publ 2:87–112

    Google Scholar 

  • Watson EB, Müller T (2009) Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions. Chem Geol 267:111–124. doi:10.1016/j.chemgeo.2008.10.036

    Article  Google Scholar 

  • Weatherley DK, Henley RW (2013) Flash vaporization during earthquakes evidenced by gold deposits. Nat Geosci 6:294–298. doi:10.1038/ngeo1759

    Article  Google Scholar 

  • Woodland AB, O’Neill HSC (1997) Thermodynamic data for Fe-bearing phases obtained using noble metal alloys as redox sensors. Geochim Cosmochim Acta 61:4359–4366

    Article  Google Scholar 

Download references

Acknowledgments

A great deal of gratitude is owed to Bob Nesbitt for piquing PAS’s interest in the topic and for his incisive ruminations on komatiites and spinifex textures. David Green is also particularly thanked for discussions and providing a sample of 49J. Ian Campbell is thanked for thoughtful discussions and sharing his wisdom on the nature of plumes and komatiites. On the experimental side, we thank Bob Rapp for help maintaining the electron microprobe and Dave Clark and Dean Scott for looking after the 1-atm gas-mixing furnaces. We greatly appreciate the detailed, thorough and thought-provoking reviews from two anonymous reviewers and from the editor, Tim Grove. This work was made possible by an Australian Postgraduate Award and ANU Vice Chancellor’s Scholarship to PAS and an Australian Research Council Discovery grant, DP130101355, to HO’N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo A. Sossi.

Additional information

Communicated by Timothy L. Grove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sossi, P.A., O’Neill, H.S.C. Liquidus temperatures of komatiites and the effect of cooling rate on element partitioning between olivine and komatiitic melt. Contrib Mineral Petrol 171, 49 (2016). https://doi.org/10.1007/s00410-016-1260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1260-x

Keywords

Navigation