Skip to main content

Advertisement

Log in

Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not evidence for ultrahigh-pressure conditions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A unique assemblage including kumdykolite and kokchetavite, polymorphs of albite and K-feldspar, respectively, together with cristobalite, micas, and calcite has been identified in high-pressure granulites of the Orlica-Snieznik dome (Bohemian Massif) as the product of partial melt crystallization in preserved nanogranites. Previous reports of both kumdykolite and kokchetavite in natural rocks are mainly from samples that passed through the diamond stability field. However, because the maximum pressure recorded in these host rocks is <3 GPa, our observations indicate that high pressure is not required for the formation of kumdykolite and kokchetavite, and their presence is not therefore an indicator of ultrahigh-pressure conditions. Detailed microstructural and microchemical investigation of these inclusions indicates that such phases should instead be regarded as (1) a direct mineralogical criteria to identify former melt inclusions with preserved original compositions, including H2O and CO2 contents and (2) indicators of rapid cooling of the host rocks. Thus, the present study provides novel criteria for the interpretation of melt inclusions in natural rocks and allows a more rigorous characterization of partial melts during deep subduction to mantle depth as well as their behavior on exhumation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anczkiewicz R, Szczepański J, Mazur S, Storey C, Crowley Q, Villa IM, Thirlwall MF, Jeffries TE (2007) Lu–Hf geochronology and trace element distribution in garnet: implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland. Lithos 95:363–380. doi:10.1016/j.lithos.2006.09.001

    Article  Google Scholar 

  • Angel RJ, Mazzucchelli ML, Alvaro M, Nimis P, Nestola F (2014) Geobarometry from host-inclusion systems: the role of elastic relaxation. Am Mineral 99:2146–2149. doi:10.2138/am-2014-5047

    Article  Google Scholar 

  • Angel RJ, Nimis P, Mazzucchelli ML, Alvaro M, Nestola F (2015) How large are departures from lithostatic pressure? Constraints from host-inclusion elasticity. J Metamorph Geol 33:801–813. doi:10.1111/jmg.12138

    Article  Google Scholar 

  • Bartoli O, Cesare B, Poli S, Bodnar RJ, Acosta-Vigil A, Frezzotti ML, Meli S (2013) Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology 41:115–118. doi:10.1130/G33455.1

    Article  Google Scholar 

  • Bartoli O, Cesare B, Remusat L, Acosta-Vigil A, Poli S (2014) The H2O content of granite embryos. Earth Planet Sci Lett 395:281–290. doi:10.1016/j.epsl.2014.03.031

    Article  Google Scholar 

  • Bodnar RJ (2003) Re-equilibration of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineralogical Association of Canada, Short Course 32, pp 213–230

  • Bose K, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am Mineral 80:231–238

    Google Scholar 

  • Bröcker M, Klemd R (1996) Ultrahigh-pressure metamorphism in the Śnieżnik Mountains (Sudetes, Poland): P-T constraints and geological implications. J Geol 104:417–433

    Article  Google Scholar 

  • Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125:1079–1113

    Article  Google Scholar 

  • Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D, Cavallo A (2009) Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology 37:627–630. doi:10.1130/G25759A.1

    Article  Google Scholar 

  • Cesare B, Acosta-Vigil A, Ferrero S, Bartoli O (2011) Melt inclusions in migmatites and granulites. In: Forster MA, Fitz Gerald JD (eds) The science of microstructure—part II, Electronic edition. J Virtual Explor 38 (paper 2)

  • Cesare B, Acosta-Vigil A, Bartoli O, Ferrero S (2015) What can we learn from melt inclusions in migmatites and granulites? Lithos 239:186–216. doi:10.1016/j.lithos.2015.09.028

    Article  Google Scholar 

  • Chesnokov BV, Lotova EV, Pavlyuchenko VS, Usova LV, Bushmakin AF, Nishanbayev TP (1989) Svyatoslavite CaAl2Si2O8: (orthorhombic)—a new mineral. Zap Vses Mineral Obshch 118:111–114 (in Russian)

    Google Scholar 

  • Darling RS, Chou IM, Bodnar RJ (1997) An occurrence of metastable cristobalite in high-pressure garnet granulite. Science 276:91

    Article  Google Scholar 

  • Downs RT, Palmer DC (1994) The pressure behavior of a cristobalite. Am Mineral 79:9–14

    Google Scholar 

  • Ferrando S, Frezzotti ML, Dallai L, Compagnoni R (2005) Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem Geol 223:68–81

    Article  Google Scholar 

  • Ferrero S, Bodnar RJ, Cesare B, Viti C (2011) Reequilibration of primary fluid inclusions in peritectic garnet from metapelitic enclaves, El Hoyazo, Spain. Lithos 124:117–131

    Article  Google Scholar 

  • Ferrero S, Bartoli O, Cesare B, Salvioli-Mariani E, Acosta-Vigil A, Cavallo A, Groppo C, Battiston S (2012) Microstructures of melt inclusions in anatectic metasedimentary rocks. J Metamorph Geol 30:303–322. doi:10.1111/j.1525-1314.2011.00968.x

    Article  Google Scholar 

  • Ferrero S, Braga R, Berkesi M, Cesare B, Laridhi Ouazaa N (2014) Production of metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean. J Metamorph Geol 32:209–225. doi:10.1111/jmg.12068

    Article  Google Scholar 

  • Ferrero S, Wunder B, Walczak K, O’Brien PJ, Ziemann MA (2015) Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology 43:447–450. doi:10.1130/G36534.1

    Article  Google Scholar 

  • Frezzotti ML, Ferrando S (2015) The chemical behavior of fluids released during deep subduction based on fluid inclusions. Am Mineral 100:352–377

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Hermann J, Rubatto D (2014) Subduction of continental crust to mantle depth: geochemistry of ultrahigh-pressure rocks. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 309–340

    Chapter  Google Scholar 

  • Hermann J, Spandler C (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740. doi:10.1093/petrology/egm073

    Article  Google Scholar 

  • Hermann J, Zheng Y-F, Rubatto D (2013) Deep fluids in subducted crust. Elements 9:281–287

    Article  Google Scholar 

  • Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am Mineral 65:129–134

    Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. doi:10.1111/j.1525-1314.2010.00923.x

    Article  Google Scholar 

  • Holness MB, Sawyer EW (2008) On the pseudomorphing of melt-filled pores during the crystallization of migmatites. J Petrol 49:1343–1363

    Article  Google Scholar 

  • Huang L, Kieffer J (2004) Amorphous-amorphous transitions in silica glass. I. Reversible transitions and thermomechanical anomalies. Phys Rev B 69:224203

    Article  Google Scholar 

  • Hwang S-L, Shen P, Chu HT, Yui TF, Liou JG, Sobolev NV, Zhang RY, Shatsky VS, Zayachkovsky AA (2004) Kokchetavite: a new polymorph of KAlSi3O8 from the Kokchetav UHP terrain. Contrib Mineral Petrol 148:380–389

    Article  Google Scholar 

  • Hwang S-L, Shen P, Chu H-T, Yui T-F, Liou J-G, Sobolev NV (2009) Kumdykolite, an orthorhombic polymorph of albite, from the Kokchetav ultrahigh-pressure massif, Kazakhstan. Eur J Mineral 21:1325–1334

    Article  Google Scholar 

  • Kanzaki M, Xue X, Amalberti J, Zhang Q (2012) Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8 H2O) and its anhydrous form (kokchetavite). J Mineral Petrol Sci 107:114–119

    Article  Google Scholar 

  • Korsakov AV, Hermann J (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett 241:104–118

    Article  Google Scholar 

  • Kotková J, Škoda R, Machovič V (2014) Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif. Am Mineral 99:1798–1801

    Article  Google Scholar 

  • Kryza R, Pin C, Vielzeuf D (1996) High pressure granulites from the Sudetes (SW Poland): evidence of crustal subduction and collisional thickening in the Variscan Belt. J Metamorph Geol 14:531–546. doi:10.1046/j.1525-1314.1996.03710.x

    Article  Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M, Compagnoni R (2006) Polyphase inclusions in garnet–orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett 249:173–187. doi:10.1016/j.epsl.2006.07.017

    Article  Google Scholar 

  • Massonne H-J, O’Brien PJ (2003) The Bohemian Massif and the NW Himalayas. In: Carswell DA, Compagnoni R (eds) Ultrahigh-pressure metamorphism. E.M.U. Notes in Mineralogy 5, pp 145–187

  • Mikhno AO, Schmidt U, Korsakov AV (2013) Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: evidence from confocal Raman imaging. Eur J Mineral 25:807–816. doi:10.1127/0935-1221/2013/0025-2321

    Article  Google Scholar 

  • Németh P, Lehner SW, Petaev MI, Buseck P (2013) Kumdykolite, a high-temperature feldspar from an enstatite chondrite. Am Mineral 98:1070–1073

    Article  Google Scholar 

  • O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions, and implications for tectonics. J Metamorph Geol 21:3–20. doi:10.1046/j.1525-1314.2003.00420.x

    Article  Google Scholar 

  • O’Brien PJ, Ziemann MA (2008) Preservation of coesite in exhumed eclogite: insights from Raman mapping. Eur J Mineral 20:827–834. doi:10.1127/0935-1221/2008/0020-1883

    Article  Google Scholar 

  • Perraki M, Faryad SW (2014) First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos 202–203:157–166

    Article  Google Scholar 

  • Schmidt M, Poli S (2004) Magmatic Epidote. Rev Min Geochem 56:399–430. doi:10.2138/gsrmg.56.1.399

    Article  Google Scholar 

  • Steele-Macinnis M, Esposito R, Bodnar RJ (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O–CO2 systematics of vapor-saturated, silicate melt inclusions. J Petrol 52:461–2482. doi:10.1093/petrology/egr052

    Article  Google Scholar 

  • Stöckhert B, Trepmann CA, Massonne HJ (2009) Decrepitated UHP fluid inclusions: about diverse phase assemblages and extreme decompression rates (Erzgebirge, Germany). J Metamorph Geol 27:673–684

    Article  Google Scholar 

  • Swanson SE (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Am Mineral 62:966–978

    Google Scholar 

  • Swanson SE (1979) The effect of CO2 on phase equilibria and crystal growth in the system Kspar-Ab-An-Qz-H20-CO2. Am J Sci 279(703):720

    Google Scholar 

  • Tait S (1992) Selective preservation of melt inclusions in igneous phenocrysts. Am Mineral 77:146–155

    Google Scholar 

  • Touret JLR (2001) Fluids in metamorphic rocks. Lithos 55:1–25

    Article  Google Scholar 

  • Walczak K (2011) Interpretation of Sm–Nd and Lu–Hf dating of garnets from high pressure and high temperature rocks in the light of the trace elements distribution. Ph.D. thesis, Institute of Geological Sciences, Polish Academy of Sciences, Poland, pp 146

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Zhang ZY, Liou JG, Iizuka Y, Yang JS (2009) First record of K-cymrite in North Qaidam UHP eclogite, Western China. Am Mineral 94:222–228

    Article  Google Scholar 

Download references

Acknowledgments

The Alexander von Humboldt Foundation, the German Federal Ministry for Education and Research, and the Deutsche Forschungsgemeinschaft (Project FE 1527/2-1) are gratefully acknowledged by SF for funding this study. RJA was supported by a European Research Council starting Grant 307322 to F. Nestola. The authors are grateful to Katarzyna Walczak who provided the samples and to M. Steele-Macinnis, M. Konrad-Schmolke, and Eleanor Berryman for thought-provoking discussions on the behavior of the melt inclusion and daughter phases on cooling. Christina Günther and Peter Czaja are acknowledged for the help provided during the analytical sessions. Comments and suggestions from Othmar Müntener and two anonymous reviewers improved clarity and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Ferrero.

Additional information

Communicated by Othmar Müntener.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrero, S., Ziemann, M.A., Angel, R.J. et al. Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not evidence for ultrahigh-pressure conditions. Contrib Mineral Petrol 171, 3 (2016). https://doi.org/10.1007/s00410-015-1220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1220-x

Keywords

Navigation