Skip to main content

Advertisement

Log in

Xenotime-(Y) formation from zircon dissolution–precipitation and HREE fractionation: an example from a metamorphosed phosphatic sandstone, Espinhaço fold belt (Brazil)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present an example where xenotime-(Y) together with metamorphic zircon replaces detrital zircon in a phosphatic sandstone from the Mesoproterozoic Espinhaço fold belt, Brazil, in a dissolution–precipitation reaction:

$${\text{zircon}}_{1} \left( {\text{relict}} \right) + {\text{P-}}{\text{bearing fluid}} = {\text{zircon}}_{2} \left( {\text{metamorphic}} \right) + {\text{xenotime}}.$$

During the Brasiliano orogeny at 634 ± 19 Ma, the rocks experienced amphibolite facies metamorphism at ≥0.6 GPa/~550 ± 37 °C (Southern Espinhaço) and ≥0.6 GPa/~570 ± 35 °C (Northern Espinhaço), constrained by Zr-in-rutile and Ti-in-quartz thermometry and the presence of kyanite + muscovite + quartz. Many of the rocks show unusual rare earth element (REE) patterns with a hump at Gd–Tb–Dy and depletion in light REE. Detrital zircons (with relict ages between 1.5 and 3.3 Ga) show varying degrees of replacement as indicated by the presence of xenotime and associated porosity, from almost pristine to complete alteration. Textural evidence indicates local mobility of Zr and REE at the scale of the thin section. Xenotime-(Y) occurs together with other phosphates, mainly augelite, lazulite, and minerals of the svanbergite–crandallite–goyacite–florencite group. Xenotime-(Y) is very heterogeneous and reaches unusually high contents of up to 14 wt% Gd2O3, 13 wt% Dy2O3, and 3 wt% Tb2O3, corresponding to ≤0.36 REE atoms per formula unit due to the exchange Y = REE. The heavy REE patterns of xenotime-(Y) therefore show variable enrichment in individual elements, which explains the characteristic hump at Gd–Tb–Dy in the REE patterns of the whole rock. Although the rocks reached amphibolite facies conditions, textures indicate that formation of xenotime likely occurred during the early stages of diagenesis—metamorphism. Comparison with REE concentrations in xenotime-(Y) from the literature shows that selective REE incorporation into xenotime-(Y) is controlled by interaction with P-bearing hydrous fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adlakha EE, Hattori K (2015) Compositional variation and timing of aluminum phosphate-sulfate minerals in the basement rocks along the P2 fault and in association with the McArthur River uranium deposit, Athabasca Basin, Saskatchewan, Canada. Am Mineral 100:1386–1399

    Article  Google Scholar 

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and the lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Beliolipetskii AP, Voloshin AV (1996) Yttrium and rare earth element minerals of the Kola Peninsula, Russia. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman and Hall, London, pp 311–326

    Google Scholar 

  • Boullier AM (1980) A preliminary study on the behaviour of brittle minerals in a ductile matrix: example of zircons and feldspars. J Struc Geol 2:211–217

    Article  Google Scholar 

  • Buck HM, Cooper MA, Cerny P, Grice JD, Hawthorne FC (1999) Xenotime-(Yb), YPO4, a new mineral species from the Shatford Lake pegmatite group, southeastern Manitoba, Canada. Can Mineral 37:1303–1306

    Google Scholar 

  • Cabella R, Lucchetti G, Marescotti P (2001) Authigenic monazite and xenotime from pelitic metacherts in pumpellyite-actinolite-facies conditions, Sestri-Voltaggio Zone, Central Liguria, Italy. Can Mineral 39:712–727

    Article  Google Scholar 

  • Cassedanne JO, Franco RR (1966) Indices de dumortierite de la Serra da Vereda (Municipio de Macaúbas et Boquira, Etat de Bahia). Anais Acad Brasil Ciênc 38:47–52

    Google Scholar 

  • Cassedanne JP, Cassedanne JO, Carvalho HF (1989) Origine des lazulites liées á des accidents ferriféres dans des quartzites à dumortierite (Serra da Vereda, Bahia, Brésil). Anais Acad Brasil Ciênc 61:59–72

    Google Scholar 

  • Danderfer A, de Waele B, Pedreira AJ, Nalini HA (2009) New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton, Brazil. Prec Res 170:116–128

    Article  Google Scholar 

  • de Almeida FFM, Hasui Y, De Brito Neves BB, Fuck RA (1981) Brazilian structural provinces: an introduction. Earth Sci Rev 17:1–29

    Article  Google Scholar 

  • Dempster TJ, Hay DC, Buck BJ (2004) Zircon growth in slate. Geology 32:221–224

    Article  Google Scholar 

  • Dempster TJ, Hay DC, Gordon SH, Kelly NM (2008) Micro-zircon: origin and evolution during metamorphism. J Metam Geol 26:499–507

    Article  Google Scholar 

  • Duc-Tin Q, Kepler H (2015) Monazite and xenotime solubility in granitic melts and the origin of the lanthanide tetrad effect. Contrib Mineral Petrol 169:8–32

    Article  Google Scholar 

  • Fisher LA, Cleverly JS, Pownceby M, MacRae C (2013) 3D representation of geochemical data, the corresponding alteration and associated REE mobility at the Ranger uranium deposit, Northern Territory, Australia. Min Dep 48:947–966

    Article  Google Scholar 

  • Fleischer R (1971) Observaçoes geológicas sobre a dumortierita da Serra das Veredas-Bahia. Mineraçao e Metalurgia 54:21–24

    Google Scholar 

  • Fletcher IR, Rasmussen B, McNaughton NJ (2000) SHRIMP U-Pb geochronology of authigenic xenotime and its potential for dating sedimentary basins. Aust J Earth Sci 47:845–859

    Article  Google Scholar 

  • Förster HJ (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals from peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime. Am Mineral 83:1302–1315

    Google Scholar 

  • Franz G, Andrehs G, Rhede D (1996) Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany. Eur J Mineral 8:1079–1118

    Google Scholar 

  • Franz G, Morteani G, Gerdes A, Rhede D (2014) Ages of protolith and Neoproterozoic metamorphism of Al–P-bearing quartzites of the Veredas formation (Northern Espinhaço, Brazil): LA–ICP–MS age determinations on relict and recrystallized zircon and geodynamic consequences. Prec Res 250:6–26

    Article  Google Scholar 

  • Fraser GL, Pattison DRM, Heaman LM (2004) Age of the Ballachulish and Glen Coe Igneous Complexes (Scottish Highlands), and paragenesis of zircon, monazite and baddeleyite in the Ballachulish Aureole. J Geol Soc Lond 161:447–462

    Article  Google Scholar 

  • Gaboreau S, Beaufort D, Viellard P, Patrier P, Bruneton P (2005) Aluminium-phosphate-sulfate minerals associated with proterozoic unconformity-type uranium deposits in the east Alligator Rivers Uranium Field, northern territory, Australia. Can Mineral 43:813–827

    Article  Google Scholar 

  • Gaboreau S, Cuney M, Quirt D, Beaufort D, Patrier P, Mathieu R (2007) Significance of aluminum phosphate-sulfate minerals associated with U unconformity-type deposits: The Athabasca basin, Canada. Am Mineral 92:267–280

    Article  Google Scholar 

  • Geisler T, Ulonska M, Schleicher H, Pidgeon RT, von Bronswijk W (2001) Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contrib Mineral Petrol 141:53–65

    Article  Google Scholar 

  • Geisler T, Rashwan AA, Rahn MKW, Poller U, Zwingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Article  Google Scholar 

  • Guadagnin F, JrF Chemale, Magalhães JC, Santana A, Dussin I, Takehara L (2015) Age constraints on crystal-tuff from the Espinhaço Supergroup: insight into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the Congo-São Francisco Craton. Gondwana Res 27:363–376

    Article  Google Scholar 

  • Gysi AP, William-Jones AE, Harlov D (2015) The solubility of xenotime-(Y) and other HREE phosphates (DyPO4, YbPO4 and ErPO4) in aqueous solutions from 100 to 250°C and p sat . Chem Geol 401:83–95

    Article  Google Scholar 

  • Hay DC, Dempster TJ (2009) Zircon behavior during low-temperature metamorphism. J Petrol 50:571–589

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Article  Google Scholar 

  • Jonasson RG, Bancroft GM, Boatner LA (1988) Surface reactions of synthetic, end-member analogues of monazite, xenotime and rhabdophane, and evolution of natural waters. Geochim Cosmochim Acta 52:767–770

    Article  Google Scholar 

  • Jordt-Evangelista H, Danderfer A (2012) Quarzito azul com dumortierita e fosfatos de aluminio del Espinhaço setentrional, Bahia: mineralogia e petrogenese. Rev Brasil Geosci 42:363–372

    Google Scholar 

  • Kidder DL, Eddy-Dilek CA (1994) Rare-earth element variation in phosphate nodules from midcontinent Pennsylvanian cyclothems. J Sed Res A64:584–592

    Google Scholar 

  • Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of zircon. Am Mineral 100:897–908

    Article  Google Scholar 

  • Liathi A, Gebauer D (2009) Crustal origin of zircon in a garnet peridotite: a study of U-Pb SHRIMP dating, mineral inclusions and REE geochemistry (Erzgebirge, Bohemian Massif). Eur J Mineral 21:737–750

    Article  Google Scholar 

  • Lucassen F, Franz G, Rhede D, Wirth R (2010) Ti–Al zoning of experimentally grown titante in the system CaO–Al2O3–TiO2–SiO2–NaCl–H2O-(F): evidence for small-scale fluid heterogeneity. Am Mineral 95:1365–1378

    Article  Google Scholar 

  • Masau M, Černý P, Chapman R (2000) Dysprosian xenotime-(Y) from the Annie Claim granitic pegmatite, southeastern Manitoba, Canada: evidence of the tetrad effect. Can Mineral 38:899–905

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1979) Rare earth element mobility associated with uranium mineralisation. Nature 282:247–250

    Article  Google Scholar 

  • Mercadier J, Skirrow RG, Cross AJ (2013) Uranium and gold deposits in the Pine Creek Orogen (North Australian Craton): a link at 1.8 Ga? Prec Res 238:111–119

    Article  Google Scholar 

  • Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196

    Article  Google Scholar 

  • Morteani G, Ackermand D (2004) Mineralogy and geochemistry of Al-phosphate and Al-borosilicate-bearing metaquartzites of the northern Serra do Espinaço (State of Bahia, Brazil). Mineral Petrol 80:59–81

    Article  Google Scholar 

  • Morteani G, Ackermand D, Horn AH (2001) Aluminium-phosphates and borosilicates in muscovite-kyanite metaquartzites near Diamantina (Minas Gerais, Brazil): petrogenetic implications. Period Mineral 70:111–129

    Google Scholar 

  • Morteani G, Ackermand D, Trappe J (2007). Aluminium-phosphate in Proterozoic metaquartzites: Implications for the Precambrian oceanic P-budget and development of life. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds), The evolution of the Rheic ocean: From Avalonian-Cadomian active margin to Alleghanian-Variscan collision. Geol Soc Amer Spec Pap 423:579–592

  • Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. Rev Miner Geochem 53:427–467

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Váczi T (2010) Retention of uranium in complexely altered zircon: an example from Bancroft, Ontario. Chem Geo 269:290–300

    Article  Google Scholar 

  • Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of monazite and xenotime structures. Am Mineral 80:21–26

    Google Scholar 

  • Peppard DF, Mason GW, Lewey S (1969) A tetrad effect in the liquid-liquid extraction ordering of the lanthanides(III). J Inorg Nucl Chem 31:2271–2272

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124

    Article  Google Scholar 

  • Rasmussen B (1996) Early-diagenetic REE-phosphate minerals (florencite, crandallite, gorceixite and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am J Sci 296:601–632

    Article  Google Scholar 

  • Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ~250 °C. Contrib Mineral Petrol 150:146–155

    Article  Google Scholar 

  • Rasmussen B, Muhlig JR (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contrib Mineral Petrol 154:675–689

    Article  Google Scholar 

  • Rasmussen B, Buick R, Taylor WE (1998) Removal of oceanic REE by authigenic precipitation of phosphatic minerals. Earth Planet Sci Lett 164:135–149

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhlig JR (2011) Response of xenotime to regional metamorphism. Contrib Mineral Petrol 162:1259–1277

    Article  Google Scholar 

  • Repina SA (2010) Zoning and sectoriality of the florencite and xenotime group minerals from quartz vein, the subpolar Urals. Geol Ore Dep 52:821–836

    Article  Google Scholar 

  • Rhede D, Wendt I, Förster HJ (1996) A three-dimensional method for calculating indipendent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chem Geol 130:247–253

    Article  Google Scholar 

  • Rimša A, Whitehause MJ, Johannson L, Piazzolo S (2007) Brittle fracturing and fracture healing of zircon: an integrated cathodoluminescence, EBSD, U–Th–Pb, and REE study. Am Mineral 92:1213–1224

    Article  Google Scholar 

  • Rubin JN, Henry CD, Price JG (1993) The mobility of zirconium and other "immobile" elements during hydrothermal alteration. Chem Geol 110:29–47

    Article  Google Scholar 

  • Schmidt C, Rickers K, Wirth R, Nasdala L, Hanchar JM (2006) Low-temperature Zr mobility: an in situ synchrotron-radiation XRF study of the effect of radiation damage in zircon on the element release in H2O + HCl ± SiO2 fluids. Am Mineral 91:1211–1215

    Article  Google Scholar 

  • Schmidt C, Rickers K, Bilderback DH, Huang R (2007) In situ synchrotron-radiation XRF study of REE phosphate dissolution in aqueous fluids to 800 °C. Lithos 95:87–102

    Article  Google Scholar 

  • Spear FS, Pyle JM (2002) Apatite, monazite and xenotime in metamorphic rocks. Rev Mineral Geochem 48:293–336

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust. Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford

    Google Scholar 

  • Vallini DA, Rasmussen B, Krapez B, Fletcher IR, McNaughton NJ (2005) Microtextures, geochemistry and geochronology of authigenic xenotime: constraining the cementation history of a Palaeoproterozoic metasedimentary sequence. Sedimentol 52:101–122

    Article  Google Scholar 

  • van Lichtervelde M, Melcher F, Wirth R (2009) Magmatic vs. hydrothermal origin for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada. Am Mineral 94:439–450

    Article  Google Scholar 

  • Viellard P, Tardy Y, Nahon D (1979) Stability fields of clays and aluminum phosphates: parageneses in lateritic weathering of argillaceous phosphatic sediments. Am Mineral 64:626–634

    Google Scholar 

  • Voloshin AV, Pakhomovskii YaA (1986) Minerals and evolution of mineral formation in the amazonitic pegmatites of the Kola Peninsula. Nauka Press, Leningrad, Russia (in Russian, not seen, quoted from Beliolipetskii et al., Buck et al.)

  • Wall F, Niku-Paavlova VN, Storey C, Müller A, Jeffries T (2008) Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: unusually low LREE:HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon. Can Mineral 46:861–877

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support for this study by the Deutsche Forschungsgemeinschaft (Grant Number FR 557/27-1). B. Dunker created the artwork for Fig. 1, F. Börner the graphs of the REE diagrams. J. Selverstone and E. Berryman kindly corrected the English and gave valuable hints to clarify the text. Two anonymous reviewers supplied very careful and helpful reviews, which significantly improved the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Franz.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 111 kb)

Supplementary material 2 (PDF 13316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franz, G., Morteani, G. & Rhede, D. Xenotime-(Y) formation from zircon dissolution–precipitation and HREE fractionation: an example from a metamorphosed phosphatic sandstone, Espinhaço fold belt (Brazil). Contrib Mineral Petrol 170, 37 (2015). https://doi.org/10.1007/s00410-015-1191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1191-y

Keywords

Navigation