Skip to main content
Log in

Formation and evolution of the Høgtuva beryllium deposit, Norway

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Metagranite in the Høgtuva tectonic window, Nordland, Norway, hosts several spatially restricted Be mineralisations with phenakite as the main ore mineral. Geochronology of magmatic zircon (zircon-I) indicates crystallisation of phenakite-bearing and beryl-free metaluminous granite at 1787 ± 57 Ma and of phenakite- and beryl (beryl-I)-bearing peraluminous aplites and pegmatites at 1710 ± 59 Ma. Crystallisation of texturally distinct zircon (zircon-II) cogenetic with fluorite in peraluminous aplites and pegmatites occurred at 434 ± 14 Ma during Caledonian metamorphism in Be-mineralised and barren metagranite. Breakdown of phenakite post-dates growth of zircon-II and resulted in the crystallisation of metamorphic høgtuvaite (Ca2 \({\text{Fe}}_{3}^{2 + } {\text{Fe}}_{3}^{3 + }\)Si4BeAlO20) in metaluminous metagranite and metamorphic beryl (beryl-II) in peraluminous metamorphosed aplites and pegmatites. Qualitative and quantitative assessment of mineral reactions implies that Be has not been mobilised to significant degrees during metamorphism, in spite of the presence of a fluorine-rich fluid, and that phenakite underwent in situ metamorphic reactions. Høgtuvaite crystallised as a metamorphic phase at the expense of phenakite, the anorthite component in albitic plagioclase, magnetite and possibly clinopyroxene. In peraluminous environments, the breakdown of phenakite to metamorphic beryl-II is accompanied by the formation of albite. A decreasing activity ratio of a(K+/H+) in the metamorphic fluid results in the reaction of K-feldspar and phenakite to beryl-II. Further decrease in a(K+/H+) finally results in complete transformation of the remaining K-feldspar into albite. The metamorphic breakdown of phenakite in the distinct Be-mineralisation types at Høgtuva is probably controlled by changes in the activities of Na+, K+ and H+ in the coexisting metamorphic fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This reference and the following referenced reports from the Geological Survey of Norway can be downloaded free of charge from the NGU website at www.ngu.no.

References

  • Abdalla HM, Mohamed FH (1999) Mineralogical and geochemical investigation of emerald and beryl mineralisation, Pan-African Belt of Egypt: genetic and exploration aspects. J Afr Earth Sci 28:581–598

    Article  Google Scholar 

  • Armstrong JT (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New York, pp 261–315

    Chapter  Google Scholar 

  • Baba J, Grew ES, Shearer CK, Sheraton JW (2000) Surinamite: a high-temperature metamorphic beryllosilicate from Lewisian sapphirine-bearing kyanite–orthopyroxene–quartz–potassium feldspar gneiss at South Harris, N.W. Scotland. Am Mineral 85:1474–1484

    Google Scholar 

  • Banks DA, Giuliani G, Yardley BWD, Cheilletz A (2000) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Miner Depos 35:699–713

    Article  Google Scholar 

  • Barbier J, Grew ES, Moore PB, Su S-C (1999) Khmaralite, a new beryllium-bearing mineral related to sapphirine: a superstructure resulting from partial ordering of Be, Al and Si on tetrahedral sites. Am Mineral 84:1650–1660

    Google Scholar 

  • Barton MD (1986) Phase equilibria and thermodynamic properties of minerals in the BeO–Al2O3–SiO2–H2O (BASH) system, with petrologic applications. Am Mineral 71:277–300

    Google Scholar 

  • Barton MD, Young S (2002) Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin. Rev Mineral Geochem 50:591–691

    Article  Google Scholar 

  • Berman RG (2007) winTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geological Survey of Canada open file 5462. Geological Survey of Canada, Ottawa, Canada (revised)

  • Beus AA (1966) Geochemistry of beryllium and genetic types of beryllium deposits. Freeman, San Francisco

    Google Scholar 

  • Bucher-Nurminen K (1988) Metamorphism of ultramafic rocks in the Central Scandinavian Caledonides. Norges Geol Unders Spec Publ 3:86–95

    Google Scholar 

  • Burt DM (1975) Beryllium mineral stabilities in the model system CaO–BeO–SiO2–P2O5–F2O−1 and the breakdown of beryl. Econ Geol 70:1279–1292

    Article  Google Scholar 

  • Burt DM (1988) Stability of genthelvite, Zn4(BeSiO4)3S: an exercise in chalkophilicity using exchange operators. Am Mineral 73:1384–1394

    Google Scholar 

  • Burt DM (1994) Vector representation of some mineral compositions in the aenigmatite group, with special reference to høgtuvaite. Can Mineral 32:449–457

    Google Scholar 

  • Burt DM, Sheridan MF (1987) Types of mineralization related to fluorine-rich silicic lava flows and domes. Geol Soc Am Spec Pap 205:1–82

    Google Scholar 

  • Burt DM, Sheridan MF, Bikun JV, Christiansen EH (1982) Topaz rhyolites: distribution, origin, and significance for exploration. Econ Geol 77:1818–1836

    Article  Google Scholar 

  • Černý P (1990) Distribution, affiliation and derivation of rare-element pegmatites in the Canadian Shield. Geol Rundsch 79:163–226

    Google Scholar 

  • Černý P (1991a) Rare-element granite pegmatites. Part I. Anatomy and internal evolution of pegmatitic deposits. Geosci Can 18:49–67

    Google Scholar 

  • Černý P (1991b) Rare-element granite pegmatites. Part II. Regional to global environments and petrogenesis. Geosci Can 18:68–81

    Google Scholar 

  • Černý P (1992) Geochemical and petrogenetic features of mineralization in rare-metal granitic pegmatites in the light of current research. Appl Geochem 7:393–416

    Article  Google Scholar 

  • Černý P (2002) Mineralogy of beryllium in granitic pegmatites. Rev Mineral Geochem 50:405–444

    Article  Google Scholar 

  • Corfu F (2004) U–Pb age, setting and tectonic significance of the anorthosite–mangerite–charnockite–granite suite, Lofoten-Vesterålen, Norway. J Petrol 45:1799–1819

    Article  Google Scholar 

  • Engell J, Hansen J, Jensen M, Kunzendorf H, Løvborg L (1971) Beryllium mineralization in the Ilímaussaq intrusion, South Greenland, with description of a field beryllometer and chemical methods. Rapp Grønl Geol Unders 33:1–40

    Google Scholar 

  • Evensen JM, London D, Wendlandt RF (1999) Solubility and stability of beryl in granitic melts. Am Mineral 84:733–745

    Google Scholar 

  • Franz G, Morteani G (1984) The formation of chrysoberyl in metamorphosed pegmatites. J Petrol 25:27–52

    Article  Google Scholar 

  • Franz G, Morteani G (2002) Be-minerals: synthesis, stability, and occurrence in metamorphic rocks. Mineral Geochem 50:551–590

    Article  Google Scholar 

  • Franz G, Grundmann G, Ackermand D (1986) Rock forming beryl from a regional metamorphic terrain (Tauern Window, Austria): parageneses and crystal chemistry. Tscher Miner Petrog 35:167–192

    Article  Google Scholar 

  • Franz G, Gilg HA, Grundmann G, Morteani G, Martin-Izard A, Paniagua A, Moreiras D, Acevedo RD, Marcos-Pascual C (1996) Metasomatism at a granitic pegmatite–dunite contact in Galicia: the Franqueira occurrence of chrysoberyl (alexandrite), emerald, and phenakite; discussion and reply. Can Mineral 34:1329–1336

    Google Scholar 

  • Goad BE, Černý P (1981) Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River district, southeastern Manitoba. Can Mineral 19:177–194

    Google Scholar 

  • Grauch RI, Lindahl I, Evans HT, Burt DM, Fitzpatrick JJ, Foord EE, Graff P-R, Hysingjord J (1994) Høgtuvaite, a new beryllian member of the aenigmatite group, from Norway, with new X-ray data on aenigmatite. Can Mineral 32:439–448

    Google Scholar 

  • Grew ES (2002) Beryllium in metamorphic environments (emphasis on aluminous compositions). Rev Mineral Geochem 50:487–550

    Article  Google Scholar 

  • Grew ES, Hazen RM (2014) Beryllium mineral evolution. Am Min 99:999–1021

    Article  Google Scholar 

  • Grew ES, Yates MG, Belakovskiy DI, Rouse RC, Su S-C, Marquez N (1994) Hyalotektite from reedmergnerite-bearing peralkaline pegmatite, Dara-i-Pioz, Tajikistan and from Mn skarn, Långban, Värmland, Sweden: a new look at an old mineral. Mineral Mag 58:285–297

    Article  Google Scholar 

  • Grew ES, Hålenius U, Kritikos M, Shearer CK (2001) New data on welshite, e.g. Ca2Mg3.8 \({\text{Mn}}_{0.6}^{2 + } {\text{Fe}}_{0.1}^{2 + } {\text{Sb}}_{1.5}^{5 + } [{\text{Si}}_{2.8} {\text{Be}}_{1.7} {\text{Fe}}_{0.65}^{3 + } {\text{Al}}_{0.7} {\text{As}}_{0.17} {\text{O}}_{18} ],\) an aenimatite-group mineral. Mineral Mag 65:665–674

  • Grew ES, Barbier J, Britten JF, Yates MG, Polyakov VO, Shcherbakova EP, Hålenius U, Shearer CK (2005) Makarochkinite, Ca2 \({\text{Fe}}_{4}^{2 + } {\text{Fe}}^{3 + }\)TiSi4BeAlO20, a new beryllosilicate member of the aenigmatite–sapphirine–surinamite group from the Il’men Mountains (southern Urals), Russia. Am Mineral 90:1402–1412

  • Grew ES, Hålenius U, Pasero M, Barbier J (2008) Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup). Mineral Mag 72:839–876

    Article  Google Scholar 

  • Groat LA, Giuliani G, Marshall DD, Turner D (2008) Emerald deposits and occurrences: a review. Ore Geol Rev 34:87–112

    Article  Google Scholar 

  • Grundmann G, Morteani G (1989) Emerald mineralization during regional metamorphism; the Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) deposits. Econ Geol 84:1835–1849

    Article  Google Scholar 

  • Grundmann G, Morteani G (2008) Multi-stage emerald formation during Pan-African regional metamorphism: the Zabara, Sikait, Umm Kabo deposits, South Eastern desert of Egypt. J Afr Earth Sci 50:168–187

    Article  Google Scholar 

  • Hemingway BS, Barton MD, Robie RA, Haselton HT (1986) Heat capacities and thermodynamic functions for beryl, Be3Al2Si6O18, phenakite, Be2SiO4, euclase, BeAlSiO4(OH), bertrandite, Be4Si2O7(OH)2, and chrysoberyl, BeAl2O4. Am Mineral 7:557–568

    Google Scholar 

  • Hölscher A, Schreyer W (1989) A new synthetic hexagonal BeMg-cordierite, Mg2Al2BeSi6O18, and its relationship to Mg-cordierite. Eur J Mineral 1:21–37

    Article  Google Scholar 

  • Hölscher A, Schreyer W, Lattard D (1986) High-pressure, high-temperature stability of surinamite in the system MgO–BeO–Al2O3–SiO2–H2O. Contrib Mineral Petrol 92:113–127

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation—inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jobin-Bevans S, Černý P (1998) The beryllian cordierite + beryl + spessartine assemblage, and secondary beryl in altered cordierite, Greer Lake granitic pegmatite, southeastern Manitoba. Can Mineral 36:447–462

    Google Scholar 

  • Kovalenko VI, Yarmolyuk VV (1995) Endogenous rare metal ore formations and rare metal metallogeny of Mongolia. Econ Geol 90:520–529

    Article  Google Scholar 

  • Krog JR (1988) Lithogeokjemisk undersøkelse av Høgtuva og Sjona grunnfjellsvinduer. Flussyreløselig Be og salpetersyreløselige konsentrasjoner av 21 andre elementer. Norges Geol Unders Rapp 88.107

  • Kunzmann T (1999) The aenigmatite–rhönite mineral group. Eur J Mineral 11:743–756

    Article  Google Scholar 

  • Larsen Ø, Skår Ø, Pedersen RB (2002) U–Pb zircon and titanite geochronological constraints on the late-/post-Caledonian evolution of the Scandinavian Caledonides in north-central Norway. Norw J Geol 82:1–13

    Google Scholar 

  • Lindsey DA (1977) Epithermal beryllium deposits in water-laid tuff, western Utah. Econ Geol 72:219–232

    Article  Google Scholar 

  • London D, Evensen JM (2002) Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Rev Mineral Geochem 50:445–486

    Article  Google Scholar 

  • Ludwig KR (2001) User’s manual for Isoplot/Ex version 2.49: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkley

    Google Scholar 

  • Ludwig KR, Lindsey DA, Zielinski RA, Simmons KR (1980) U–Pb ages of uraniferous opals and implications for the history of beryllium, fluorine, and uranium mineralization at Spor Mountain, Utah. Earth Planet Sci Lett 46:221–232

    Article  Google Scholar 

  • Mann U, Marks M, Markl G (2006) Influence of oxygen fugacity on mineral composition in peralkaline melts: the Katzenbuckel volcano, Southwest Germany. Lithos 91:262–285

    Article  Google Scholar 

  • Markl G (2001) Stability of Na–Be minerals in late-magmatic fluids of the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:145–158

    Google Scholar 

  • Markl G, Schumacher JC (1997) Beryl stability in local hydrothermal and chemical environments in a mineralized granite. Am Mineral 82:195–203

    Google Scholar 

  • Merino E, Villaseca C, Orejana D, Jeffries T (2013) Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: the Belvís de Monroy leucogranite (Cáceres, Spain). Lithos 179:137–156

    Article  Google Scholar 

  • Moore PB (1978) Welshite, Ca2Mg4Fe3+Sb5+O2[Si4Be2O18], a new member oft he aenigmatite group. Mineral Mag 42:129–132

    Article  Google Scholar 

  • Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. Rev Mineral Geochem 53:427–467

    Article  Google Scholar 

  • Novák M, Gadas P, Filip J, Vaculovič T, Přikryl J, Bohuslav F (2011) Blue, complexly zoned (Na, Mg, Fe, Li)-rich beryl from quartz-calcite veins in low-grade metamorphosed Fe-deposit Skály near Rýmařov, Czech Republic. Mineral Petrol 102:3–14

    Article  Google Scholar 

  • Osmundsen PT, Braathen A, Nordgulen Ø, Roberts D, Meyer GB, Eide E (2003) The Devonian Nesna shear zone and adjacent gneiss-cored culminations, north-central Norwegian caledonides. J Geol Soc Lond 160:137–150

    Article  Google Scholar 

  • Ottaway TL, Wicks FJ, Bryndzia LT, Kyser TK, Spooner ETC (1994) Formation of the Muzo hydrothermal emerald deposit in Colombia. Nature 369:552–554

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. In: Carlsen RW, Holland HD, Turekian KK (eds) The mantle and core, v2, Treatise on geochemistry. Elsevier Science, Amsterdam, pp 1–38

    Google Scholar 

  • Pezzotta F, Diella V, Guastoni A (1999) Chemical and paragenetic data on gadolinite-group minerals from Baveno and Cuasso al Monte, Southern Alps, Italy. Am Mineral 84:782–789

    Google Scholar 

  • Polyakov VO, Cherepivskaya GY, Shcherbakova YP (1986) Makarochkinite—a new beryllosilicate. In: Polyakov VO, Cherepivskaya GE, Shcherbakov EP (eds) New and little-studied minerals and mineral associations of the Urals. Akademia Nauk SSSR Ural’sky Nauchnyy Tsentr, Sverdlovsk, pp 108–110

  • Raimbault L, Cuney M, Azencott C, Duthou JL, Joron JL (1995) Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576

    Article  Google Scholar 

  • Rao C, Wang RC, Hu H (2011) Paragenetic assemblages of beryllium silicates and phosphates from Nanping no. 31 granitic pegmatite dyk, Fujian Province, Southestern China. Can Mineral 49:1175–1187

    Article  Google Scholar 

  • Richardson DG, Birkett TC (1996) Peralkaline rock-associated rare metals. In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Geology of Canadian mineral deposit types, vol 8. Geological Survey of Canada, Geology of Canada, Ottawa, Canada, pp 523–540

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin 2131. U.S. Government Publishing Office, Washington, USA

  • Romer RL, Kjøsnes B, Korneliussen A, Lindahl I, Skyseth T, Stendal M, Sundvoll B (1992) The Archaean–Proterozoic boundary beneath the Caledonides of northern Norway and Sweden: U–Pb, Rb–Sr, and εNd isotope data from the Rombak-Tysfjord area. Norges Geol Unders Rapp 91.225

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In Holland HD, Turekian KK (eds) The crust, v. 3, Treatise on geochemistry. Elsevier Science, Amsterdam, pp 1–64

  • Ryan JG (2002) Trace element characteristics of beryllium in terrestrial materials. Rev Mineral Geochem 50:121–145

    Article  Google Scholar 

  • Schilling J, Reimann C, Roberts D (2014) REE potential of the Nordkinn Peninsula, North Norway: a comparison of soil and bedrock composition. Appl Geochem 41:95–106

    Article  Google Scholar 

  • Skår Ø (2002) U–Pb geochronology and geochemistry of early-Proterozoic rocks of the tectonic basement windows in central Nordland, Caledonides of north-central Norway. Precambrian Res 116:265–283

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Søvegjarto U, Marker M, Graversen O, Gjelle S (1988) Berggrunnskart Mo I Rana 1927 I—M.1:50000. Norges Geol Unders kart

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new Table. Geochim Cosmochim Acta 28:1273–1285

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Voncken JHL, Vriend SP, Kocken JWM, Jansen JBH (1986) Determination of beryllium and its distribution in rocks of the Sn-W granite of Regoufe, Northern Portugal. Chem Geol 56:93–103

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Article  Google Scholar 

  • Wilberg R (1987) Granitophile elements in granitoid rocks in Precambrian basement windows in Nordland, Northern Norway, with special reference to the rare-element enriched gneiss at Bordvedåga, Høgtuva window. Norges Geol Unders Rapp 87.043

  • Wilberg R (1988) Sporelementinnhold og—variasjoner i beryllium-forekomstene ved Bordvedåga, Høgtuva-vinduet. Norges Geol Unders Rapp 88.177

  • Wilberg R (1989a) Snøfjellet beryllium-mineralisering, Høgtuva-vinduet. Norges Geol Unders Rapp 89.070

  • Wilberg R (1989b) Økonomisk mineralogi i Bordvedåga beryllium-forekomst. Rana, Nordland. Norges Geol Unders Rapp 89.083

  • Wilberg R, Furuhaug L (1989) Nye beryllium-mineraliseringer i Bordvedåga-Tverrbekkfjell-området. Høgtuva-vinduet. Norges Geol Unders Rapp 89.053

  • Wilberg R, Lindahl I (1991) The Bordvedåga beryllium deposit, Rana, Nordland County, Norway. Summary report. Norges Geol Unders Rapp 91.181

  • Wood SA (1992) Theoretical predictions of speciation and solubility of beryllium in hydrothermal solution to 300°C at saturated vapour pressure: application to bertrandite/phenakite deposits. Ore Geol Rev 7:249–278

    Article  Google Scholar 

  • Wünsch BJ, Hörmann PK (1978) Beryllium. In: Wedepohl KH (ed) Handbook of geochemistry, vol 2. Springer, New York, pp 4-A-1–4-O-1

    Google Scholar 

  • Yarmolyuk VV, Lykhin DA, Shuriga TN, Vorontsov AA, Sugorakova AM (2011) Age, composition of rocks, and geological setting of the Snezhnoe beryllium deposit: substantiation of the Late Paleozoic East Sayan rare-metal zone, Russia. Geol Ore Depos 53:390–400

    Article  Google Scholar 

Download references

Acknowledgments

Peter Robinson is thanked for insightful discussions throughout the project and editing the final version of the manuscript. Axel Müller and Bjørn Willemoes-Wissing are thanked for support during field work. Bengt Johansen and Benjamin Berge are thanked for sample preparation. Comments by G. Franz and two anonymous reviewers substantially improved the quality of the manuscript. Financial support through the Mineralressurser i Nord-Norge (MINN) programme of the Geological Survey of Norway (NGU) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julian Schilling or Bernard Bingen.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, J., Bingen, B., Skår, Ø. et al. Formation and evolution of the Høgtuva beryllium deposit, Norway. Contrib Mineral Petrol 170, 30 (2015). https://doi.org/10.1007/s00410-015-1179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1179-7

Keywords

Navigation