Skip to main content

Advertisement

Log in

The age of Au–Cu–Pb-bearing veins in the poly-orogenic Ubendian Belt (Tanzania): U–Th–total Pb dating of hydrothermally altered monazite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The age of gold–copper–lead mineralization in the Katuma Block of the Ubendian Belt remains controversial because of the lack of radiometric ages that correlate with the age of tectonothermal events of this poly-orogenic belt. Previous studies reported whole rock and mineral Pb–Pb ages ranging between 1,660 and 720 Ma. In this study, we report U–Th–total Pb ages of monazite from hydrothermally altered metapelites that host the Au–Cu–Pb-bearing veins. Three types of chemically and texturally distinct types of monazite grains or zones of grains were identified: monazite cores, which yielded a metamorphic age of 1,938 ± 11 Ma (n = 40), corresponding to known ages of a regional metamorphic event, deformation and granitic plutonism in the belt; metamorphic overgrowths that date a subsequent metamorphic event at 1,827 ± 10 Ma (n = 44) that postdates known eclogite metamorphism (at ca. 1,880 Ma) in the belt; hydrothermally altered poikilitic monazite, formed by dissolution–precipitation processes, representing the third type of monazite, constrain the age of a hydrothermal alteration event at 1,171 ± 17 Ma (n = 19). This Mesoproterozoic age of the hydrothermal alteration coincides with the first amphibolite grade metamorphism of metasediments in the Wakole Block, which adjoins with a tectonic contact the vein-bearing Katuma Block to the southwest. The obtained distinct monazite ages not only constrain the ages of metamorphic events in the Ubendian Belt, but also provide a link between the metamorphism of the Wakole metasediments and the generation of the hydrothermal fluids responsible for the formation of the gold–copper–lead veins in the Katuma Block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Appel P (2010) “AgeFinder”: a Mac OS X computer program to evaluate electron microprobe data of monazite for chemical age dating. Comput Geosci 36:559–563

    Article  Google Scholar 

  • Appel P (2013) CombError. http://www.ifg.uni-kiel.de/339.html. Accessed 18 Jan 2014

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal-Deerfield Beach 4:177–200

    Google Scholar 

  • Arne DC, Morgan JW, Stein HJ, Bierlein FP (2001) Re–Os dating of sulfides associated with gold mineralization in central Victoria, Australia. Econ Geol 96:1455–1459

    Article  Google Scholar 

  • Ayers JC, Watson EB (1991) Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philos Trans R Soc A: Math Phys Eng Sci 335:365–375

    Article  Google Scholar 

  • Ayers JC, Loflin M, Miller CF, Barton MD, Coath C (2004) Dating fluid infiltration using monazite. Proc Eleventh Int Symp Water–Rock Interact 1:247–251

    Google Scholar 

  • Barley ME, Groves DI (1992) Supercontinent cycles and the distribution of metal deposits through time. Geology 20:291–294

    Article  Google Scholar 

  • Biyashev M, Pentelkov V, Emelyanov S, Chuklanov B, Stepnov E, Matrenitzky T, Novikov A (1977) Sitalike: geological map quarter degree sheet 170. Geological Survey of Tanzania, Dodoma

    Google Scholar 

  • Blümel P, Schreyer W (1977) Phase Relations in Pelitic and Psammitic Gneisses of the Sillimanite—Potash Feldspar and Cordierite-Potash Feldspar Zones in the Moldanubicum of the Lam—Bodenmais Area, Bavaria. J Petrol 18:431–459

    Article  Google Scholar 

  • Boniface N, Schenk V (2012) Neoproterozoic eclogites in the Paleoproterozoic Ubendian Belt of Tanzania: evidence for a Pan-African suture between the Bangweulu Block and the Tanzania Craton. Precambrian Res 208–211:72–89

    Article  Google Scholar 

  • Boniface N, Schenk V, Appel P (2012) Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): evidence from monazite and zircon geochronology, and geochemistry. Precambrian Res 192–195:16–33

    Article  Google Scholar 

  • Boniface N, Schenk V, Appel P (2014) Mesoproterozoic high-grade metamorphism in pelitic rocks of the northwestern Ubendian Belt: implication for the extension of the Kibaran intra-continental basins to Tanzania. Precambrian Res 249:215-228

    Article  Google Scholar 

  • Boven A, Theunissen K, Sklyarov E, Klerkx J, Melnikov A, Mruma AH, Punzalan L (1999) Timing of exhumation of a high-pressure mafic granulite terrane of the Paleoproterozoic Ubende belt (West Tanzania). Precambrian Res 93:119–137

    Article  Google Scholar 

  • Braun I, Appel P (2006) U–Th–total Pb dating of monazite from orthogneisses and their ultra-high temperature metapelitic enclaves: implications for the multistage tectonic evolution of the Madurai Block, southern India. Eur J Miner 18:415–427

    Article  Google Scholar 

  • Cahen L, Snelling NJ, Delhal J, Vail J (1966) The geochronology and evolution of Africa. Clarendon Press, Oxford

    Google Scholar 

  • Daly MC (1988) Crustal shear zones in Central Africa: a kinematic approach to Proterozoic Tectonics. Episodes 11:5–11

    Google Scholar 

  • Davis DW, Schandl ES, Wasteneys HA (1994) U–Pb dating of minerals in alteration halos of Superior Province massive sulfide deposits: syngenesis versus metamorphism. Contrib Miner Petrol 115:427–437

    Article  Google Scholar 

  • Delvaux D (2001) Tectonic and palaeostress evolution of the Tanganyika-Rukwa-Malawi rift segment, East African rift System. Peri-Tethys Memoir 6: Peri—Tethyan Rift/Wrench Basins and Passive Margins, vol 6. Mimoires du Museum national d’Histoire naturelle, Paris

  • Didier A, Bosse V, Boulvais P, Bouloton J, Paquette JL, Montel JM, Devidal JL (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Miner Petrol 165:1051–1072

    Article  Google Scholar 

  • Donovan JJ, Hanchar JM, Picolli PM, Schrier MD, Boatner LA, Jarosewich E (2003) A re-examination of the rare-earth-element orthophosphate standards in use for electron-microprobe analysis. Can Mineral 41:221–232

    Article  Google Scholar 

  • Fernandez-Alonso M, Cutten H, De-Waele B, Tack L, Tahon A, Baudet D, Barritt SD (2012) The Mesoproterozoic Karagwe–Ankole Belt (formerly the NE Kibara Belt): the result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambrian Res 216–219:63–86

    Article  Google Scholar 

  • Frei R, Pettke T (1996) Mono-sample Pb–Pb dating of pyrrhotite and tourmaline: proterozoic vs. Archean intracratonic gold mineralization in Zimbabwe. Geology 24:823–826

    Article  Google Scholar 

  • Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75

    Article  Google Scholar 

  • Gruner JW (1944) The hydrothermal alteration of feldspars in acid solutions between 300 degrees and 400 degrees C. Econ Geol 39:578–589

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Miner Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2010) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Miner Petrol 162:329–348

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820

    Article  Google Scholar 

  • Holland TJB, Blundy JD (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contrib Miner Petrol 116:433–447

    Article  Google Scholar 

  • Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM (2003) Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. J Anal At Spectrom 18:837–846

    Article  Google Scholar 

  • Hu F, Fan H, Yang J, Wan Y, Liu D, Mingguo Z, Chengwei J (2004) Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U–Pb dating on hydrothermal zircon. Chin Sci Bull 49:1629–1636

    Article  Google Scholar 

  • Jarosewich E, Boatner LA (1991) Rare-earth-elements reference samples for electron microprobe analysis. Geostand Newsl 15:397–399

    Article  Google Scholar 

  • Jöns N, Schenk V, Appel P, Razakamanana T (2006) Two-stage metamorphic evolution of the Bemarivo Belt of northern Madagascar: constraints from reaction textures and in situ monazite dating. J Metamorph Geol 24:329–347

    Article  Google Scholar 

  • Kazimoto EO, Schenk V, Appel P (2014a) Granulite-facies metamorphic events in the northeastern Ubendian Belt of Tanzania: implications for the Neoarchean to Paleoproterozoic crustal evolution. Precambrian Res 256:31–47

    Article  Google Scholar 

  • Kazimoto EO, Schenk V, Berndt J (2014b) Neoarchean and Paleoproterozoic crust formation in the Ubendian Belt of Tanzania: insights from zircon geochronology and geochemistry. Precambrian Res 252:119–144

    Article  Google Scholar 

  • Kerrich R, Cassidy KF (1994) Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation—Archean to present: a review. Ore Geol Rev 9:263–310

    Article  Google Scholar 

  • Kerrich R, Kyser TK, Kyser KT, Kurt KT (1994) 100 Ma timing paradox of Archean gold, Abitibi greenstone belt (Canada): new evidence from U–Pb and Pb–Pb evaporation ages of hydrothermal zircons. Geology 22:1131–1134

    Article  Google Scholar 

  • Kilembe EA, Rosendahl BR (1992) Structure and stratigraphy of the Rukwa rift. Tectonophysics 209:143–158

    Article  Google Scholar 

  • Lawley CJM, Imber J, Selby D (2013a) Structural controls on orogenic Au mineralization during transpression: Lupa Goldfield, Southwestern Tanzania. Econ Geol 108:1615–1640

    Article  Google Scholar 

  • Lawley CJM, Selby D, Condon DJ, Horstwood M, Millar I, Crowley Q, Imber J (2013b) Lithogeochemistry, geochronology and geodynamic setting of the Lupa Terrane, Tanzania: implications for the extent of the Archean Tanzanian Craton. Precambrian Res 231:174–193

    Article  Google Scholar 

  • Lawley CJM, Selby D, Condon DJ, Imber J (2013c) Palaeoproterozoic orogenic gold style mineralization at the Southwestern Archaean Tanzanian cratonic margin, Lupa Goldfield, SW Tanzania: implications from U–Pb titanite geochronology. Gondwana Res 26(3–4):1141–1158

    Google Scholar 

  • Lawley CJM, Selby D, Imber J (2013d) Re–Os molybdenite, pyrite and chalcopyrite geochronology, Lupa Goldfield, Southwestern Tanzania: tracing metallogenic time scales at midcrustal shear zones hosting orogenic Au deposits. Econ Geol 108:1591–1613

    Article  Google Scholar 

  • Lenoir JL, Liégeois JP, Theunissen K, Klerkx J (1994) The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure. J Afr Earth 19:169–184

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Nanyaro JT (1989) Proterozoic gold-base metal veins in the Mpanda mineral field, western Tanzania. Annales Series in-8, Science Geologiques, vol 97. Musée Royale de L’Afrique Centrale, Tervuren, Belgium, p 144

  • Oelkers EH, Poitrasson F (2002) An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10. Chem Geol 191:73–87

    Article  Google Scholar 

  • Paquette JL, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237

    Article  Google Scholar 

  • Phillips D, Miller JM (2006) 40Ar/39Ar dating of mica-bearing pyrite from thermally overprinted Archean gold deposits. Geology 34:397

    Article  Google Scholar 

  • Poitrasson F, Chenery SC, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U–Th–Pb geochronology and nuclear ceramics. Geochim Cosmochim Acta 64:3283–3297

    Article  Google Scholar 

  • Pohl W (1994) Metallogeny of the northeastern Kibara belt, Central Africa-Recent perspectives. Ore Geology Rev 9:105-130

    Article  Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, Mcdonough WF (2001) Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  • Quirion DM, Jenkins DM (1998) Dehydration and partial melting of tremolitic amphibole coexisting with zoisite, quartz, anorthite, diopside, and water in the system H2O–CaO–MgO–Al2O3–SiO2. Contrib Miner Petrol 130:379–389

    Article  Google Scholar 

  • Rasmussen B, Sheppard S, Fletcher IR (2006) Testing ore deposit models using in situ U–Pb geochronology of hydrothermal monazite: Paleoproterozoic gold mineralization in northern Australia. Geology 34:77

    Article  Google Scholar 

  • Ring U, Kröner A, Toulkeridis T (1997) Palaeoproterozoic granulite-facies metamorphism and granitoid intrusions in the Ubendian–Usagaran Orogen of northern Malawi, east-central Africa. Precambrian Res 85:27–51

    Article  Google Scholar 

  • Robinson P, Hollocher K, Tracy R, Dietsch C (1982) High grade Acadian regional metamorphism in south-central Massachusetts. In: Joester RA, Quarrier SS (eds) NEIGC 74th Annual Meeting of the state Geological and Natural History Survey of Connecticut, guidebook for fieldtrips in Connecticut and South-Central Massachusetts, 1982, pp 289–340

  • Selby D, Creaser RA, Hart CJRR, Rombach CS, Thompson JFHH, Smith MT, Bakke AA, Goldfarb RJ (2002) Absolute timing of sulfide and gold mineralization: a comparison of Re–Os molybdenite and Ar–Ar mica methods from the Tintina Gold Belt, Alaska. Geology 30:791–794

    Article  Google Scholar 

  • Semyanov A, Kireev A, Doronkin I, Gavrilov G, Matrenitzky T, Novicov AG (1977) Mpanda: geological map quarter degree sheet 153. Geological Survey of Tanzania, Dodoma

    Google Scholar 

  • Smirnov V, Shulyatin O, Tolochko V, Zhukov S, Mwakisunga M, Matrenitzky T (1970) Katuma: geological map quarter degree sheet 152. Ministry of Energy and Minerals, Dodoma

    Google Scholar 

  • Spear FS (1995) Metamorphic phase equilibria and pressure–temperature–time paths. Mineralogical Society of America, Washington

    Google Scholar 

  • Stein HJ, Markey RJ, Morgan JW, Hannah JL, Schersten A (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova 13(6):479–486

    Article  Google Scholar 

  • Stendal H, Frei R, Muhongo S, Rasmussen TM, Mnali SR, Petro F, Brian Temu E (2004) Gold potential of the Mpanda mineral field, SW Tanzania: evaluation based on geological, lead isotopic and aeromagnetic data. J Afr Earth Sci 38:437–447

    Article  Google Scholar 

  • Suzuki K, Adachi M (1991) Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th–U–total Pb isochron ages of monazite, zircon and xenotime. Geochem J 25(5):357–376

    Article  Google Scholar 

  • Theunissen K, Klerkx J, Melnikov A, Mruma AH (1996) Mechanisms of inheritance of rift faulting in the western branch of the East African Rift, Tanzania. Tectonics 15:776–790

    Article  Google Scholar 

  • Vielreicher NM, Groves DI, Fletcher IR, McNaughton NJ, Rasmussen B (2003) Hydrothermal monazite and xenotime geochronology: a new direction for precise dating of orogenic gold mineralization. Soc Econ Geol 53(1):10–16

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Education and Vocational Training of Tanzania (MOEVT), the German Academic Exchange Service (DAAD) and the Department of Geology of the University of Dar es Salaam, Tanzania (through the Sida Earth Science Project), for providing funding for this research. We are grateful to Andreas Fehler and Barbara Mader for their service at the laboratories of the Christian-Albrechts-Universität Kiel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Owden Kazimoto.

Additional information

Communicated by O. Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2014_1088_MOESM1_ESM.xls

Supplementary material 1 (XLS 40 kb) Electronic Supplement Table 1 Representative electron microprobe analyses of Manangotry monazite

410_2014_1088_MOESM2_ESM.xls

Supplementary material 2 (XLS 101 kb) Electronic Supplement Table 2 Electron microprobe analyses of unaltered monazite cores

410_2014_1088_MOESM3_ESM.xls

Supplementary material 3 (XLS 102 kb) Electronic Supplement Table 3 Electron microprobe analyses of unaltered monazite overgrowth zones

410_2014_1088_MOESM4_ESM.xls

Supplementary material 4 (XLS 99 kb) Electronic Supplement Table 4 Electron microprobe analyses of hydrothermally altered monazite

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazimoto, E.O., Schenk, V. & Appel, P. The age of Au–Cu–Pb-bearing veins in the poly-orogenic Ubendian Belt (Tanzania): U–Th–total Pb dating of hydrothermally altered monazite. Contrib Mineral Petrol 169, 1088 (2015). https://doi.org/10.1007/s00410-014-1088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1088-1

Keywords

Navigation