Skip to main content
Log in

Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: insights from olivine-hosted melt inclusions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present major element, trace element, and volatile concentrations from 66 naturally glassy, olivine-hosted melt inclusions erupted along the Eastern Volcanic Zone (EVZ) of the ultraslow-spreading Gakkel Ridge. Melt inclusion compositions suggest that there are systematic variations in the mantle source composition and melting dynamics from the eastern to the western end of the EVZ. This includes increasing water contents and highly incompatible trace element concentrations (e.g., Ba and Nb) and decreasing light and middle rare earth element concentrations. Ratios of light to heavy rare earth elements in the easternmost melt inclusions are relatively homogeneous, but become more variable to the west. To determine the source of the geochemical variability observed along the EVZ, we model trace elements associated with mantle melting in one- and two-component systems. We consider four possible mantle sources and a range of melting regime shapes, from a full melting triangle to a vertical melting column centered beneath the ridge axes. The observed geochemical variations can be explained by melting of a heterogeneous mantle source composed of depleted MORB mantle plus a metasomatized mantle, where the proportion of the metasomatized component and the extent of melting increases toward the west. Lower rare earth element concentrations and trace element ratios in the westernmost sites also suggest inefficient melt focusing from the outer edges of the melting region. Our results indicate that despite variations in the size of the melting zone and the composition of the mantle source along the ridge axis, the region over which the melts are pooled back to the ridge axis is relatively constant (~10–20 km), suggesting that there is a limit to the distance melts can be transported from off-axis in ultraslow-spreading environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Asimow P, Dixon J (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosystems 5:1–24. doi:10.1029/2003GC000568

    Google Scholar 

  • Asimow P, Langmuir C (2003) The importance of water to oceanic mantle melting regimes. Nature 421:815–820

    Article  Google Scholar 

  • Behn MD, Boettcher MS, Hirth G (2007) Thermal structure of oceanic transform faults. Geology 35:307. doi:10.1130/G23112A.1

    Article  Google Scholar 

  • Bown JW, White R (1994) Variation with spreading rate of oceanic crustal thicknesses and geochemistry. Earth Planet Sci Lett 121:435–449

    Article  Google Scholar 

  • Bucholz CE, Gaetani GA, Behn MD (2013) Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet Sci Lett 374:145–155

    Article  Google Scholar 

  • Canales JP, Collins JA, Escartin J, Detrick RS (2000) Seismic structure across the rift valley of the Mid-Atlantic Ridge at 23°20′ (MARK area): implications for crustal accretion processes at slow spreading ridges. J Geophys Res 105:28411–28425. doi:10.1029/2000JB900301

    Article  Google Scholar 

  • Cannat M, Rommevauz-Jestin C, Fujimoto H (2003) Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochem Geophys Geosystems 4:1–21. doi:10.1029/2002GC000480

    Google Scholar 

  • Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce,[delta] D, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet Sci Lett 265:672–685

    Article  Google Scholar 

  • Coakley BJ, Cochran JR (1998) Gravity evidence of very thin crust at the Gakkel Ridge (Arctic Ocean). Earth Planet Sci Lett 162:81–95. doi:10.1016/S0012-821X(98)00158-7

    Article  Google Scholar 

  • Cochran J (2008) Seamount volcanism along the Gakkel Ridge, Arctic Ocean. Geophys J Int 174:1153–1173

    Article  Google Scholar 

  • Cochran JR, Kurras GJ, Edwards MH, Coakley BJ (2003) The Gakkel Ridge: bathymetry, gravity anomalies, and crustal accretion at extremely slow spreading rates. J Geophys Res 108:2116. doi:10.1029/2002JB001830

    Article  Google Scholar 

  • Cushman B, Sinton J, Ito G, Dixon J (2004) Glass compositions, plume-ridge interaction, and hydrous melting along the Galápagos Spreading Center, 90.5°W to 98°W. Geochem Geophys Geosystems 5:1–30. doi:10.1029/2004GC000709

    Google Scholar 

  • Danyushevsky LV (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43:1651–1671. doi:10.1093/petrology/43.9.1651

    Article  Google Scholar 

  • Debaille V, Trønnes RG, Brandon AD, Waight TE (2009) Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochim Cosmochim Acta 73:3423–3449

    Article  Google Scholar 

  • Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426:405–412. doi:10.1038/nature02128

    Article  Google Scholar 

  • Dixon JE, Stolper EM (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing. J Petrol 36:1633–1646

    Google Scholar 

  • Donnelly K, Goldstein S, Langmuir C, Spiegelman M (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett 226:347–366

    Article  Google Scholar 

  • Drachev SS, Savostin LA, Groshev VG, Bruni IE (1998) Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic. Tectonophysics 298:357–393

    Article  Google Scholar 

  • Dungan M, Rhodes JM (1978) Residual glasses and melt inclusions in basalts from DSDP legs 45 and 46: evidence for magma mixing. Contrib Mineral Petrol 67:417–431. doi:10.1007/BF00383301

    Article  Google Scholar 

  • England PC, Katz RF (2010) Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467:700–704. doi:10.1038/nature09417

    Article  Google Scholar 

  • Falloon TJ, Green DH (1986) Glass inclusions in magnesian olivine phenocrysts from tonga: evidence for highly refractory parental magmas in the tongan arc. Earth Planet Sci Lett 81:95–103. doi:10.1016/0012-821X(86)90103-2

    Article  Google Scholar 

  • Forsyth DW (1993) Crustal thickness and the average depth and degree of melting in fractional melting models of passive flow beneath mid-ocean ridges. J Geophys Res 98:16073. doi:10.1029/93JB01722

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite—Springer. Contrib Mineral Petrol 131:323–346

    Article  Google Scholar 

  • Gaetani GA, O’Leary JA, Shimizu N et al (2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40:915–918. doi:10.1130/G32992.1

    Article  Google Scholar 

  • Gale A, Escrig S, Gier EJ et al (2011) Enriched basalts at segment centers: the Lucky Strike (37 17′ N) and Menez Gwen (37 50′ N) segments of the Mid-Atlantic Ridge. Geochem Geophys Geosystems 12:1–26. doi:10.1029/2010GC003446

    Google Scholar 

  • Galer S, O’nions RK (1986) Magmagenesis and the mapping of chemical and isotopic variations in the mantle. Chem Geol 56:45–61

    Article  Google Scholar 

  • Ghods A, Arkani-Hamed J (2000) Melt migration beneath mid-ocean ridges. Geophys J Int 140:687–697

    Article  Google Scholar 

  • Goldstein SL, Soffer G, Langmuir CH et al (2008) Origin of a “Southern Hemisphere” geochemical signature in the arctic upper mantle. Nature 453:89–93. doi:10.1038/nature06919

    Article  Google Scholar 

  • Gregg PM, Behn MD, Lin J (2009) Melt generation, crystallization, and extraction beneath segmented oceanic transform faults. J Geophys Res 114:1–16

    Google Scholar 

  • Grove TL, Chatterjee N, Parman SW (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Article  Google Scholar 

  • Hauri E, Wang J, Dixon J et al (2002) SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114

    Article  Google Scholar 

  • Hebert LB, Montési LGJ (2010) Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochem Geophys Geosystems. doi:10.1029/2010GC003270

    Google Scholar 

  • Hellebrand E, Snow JE, Mühe R (2002) Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions. Chem Geol 182:227–235

    Article  Google Scholar 

  • Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124:185–208

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314

    Article  Google Scholar 

  • Hooft EEE, Detrick RS, Toomey DR et al (2000) Crustal thickness and structure along three contrasting spreading segments of the Mid-Atlantic Ridge, 33.5°–35°N. J Geophys Res 105:8205–8226. doi:10.1029/1999JB900442

    Article  Google Scholar 

  • Ionov DA, Bodinier JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:2219–2259. doi:10.1093/petrology/43.12.2219

    Article  Google Scholar 

  • Jakobsson M, Mayer L, Coakley B (2012) The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0—jakobsson—2012—geophysical research letters—wiley online library. Geophys Res Lett 39:1–6

    Google Scholar 

  • Jochum KP, Nohl U (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253:50–53

    Article  Google Scholar 

  • Jochum KP et al (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosystems 7. doi:10.1029/2005GC001060

  • Jokat W, Schmidt-Aursch MC (2007) Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean. Geophys J Int 168:983–998

    Article  Google Scholar 

  • Jokat W, Ritzmann O, Schmidt-Aursch MC et al (2003) Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423:962–965. doi:10.1038/nature01706

    Article  Google Scholar 

  • Katz RF (2008) Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. J Petrol 49:2099–2121. doi:10.1093/petrology/egn058

    Article  Google Scholar 

  • Kelemen P, Aharonov E (1998) Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges. Faulting Magmat Mid-ocean Ridges 106:267–289

    Article  Google Scholar 

  • Kelley K, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607

    Article  Google Scholar 

  • Klein E (2005) Geochemistry of the Igneous Oceanic Crust. Crust: Treatise Geochem 3:433–464

    Google Scholar 

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92:8089–8115

    Article  Google Scholar 

  • Korenaga J, Kelemen P (1997) Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: implications for magma transport in the oceanic lower crust. J Geophys Res 102:27729–27749

    Article  Google Scholar 

  • Langmuir C, Klein E, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. AGU Geophys Monogr 71:183–280

    Google Scholar 

  • Laubier M, Gale A, Langmuir CH (2012) Melting and crustal processes at the famous segment (Mid-Atlantic Ridge): new insights from olivine-hosted melt inclusions from multiple samples. J Petrol 53:665–698. doi:10.1093/petrology/egr075

    Article  Google Scholar 

  • Le Roux V, Bodinier JL, Tommasi A, Alard O (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • Lizarralde D, Gaherty JB, Collins JA et al (2004) Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data. Nature 432:744–747. doi:10.1038/nature03140

    Article  Google Scholar 

  • Magde LS, Sparks DW (1997) Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges. J Geophys Res 102:20571. doi:10.1029/97JB01278

    Article  Google Scholar 

  • McDonough W, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Michael P (1988) The concentration, behavior and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochim Cosmochim Acta 52:555–566

    Article  Google Scholar 

  • Michael P (1995) Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131:301–320

    Article  Google Scholar 

  • Michael PJ, Langmuir CH, Dick HJB et al (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423:956–961. doi:10.1038/nature01704

    Article  Google Scholar 

  • Montési LG, Behn MD (2007) Mantle flow and melting underneath oblique and ultraslow mid-ocean ridges. Geophys Res Lett 34:1–5. doi:10.1029/2007GL031067

    Google Scholar 

  • Montési LGJ, Behn MD, Hebert LB et al (2011) Controls on melt migration and extraction at the ultraslow Southwest Indian Ridge 10°–16°E. J Geophys Res 116:1–19. doi:10.1029/2011JB008259

    Google Scholar 

  • Morgan JP, Morgan WJ (1999) Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet Sci Lett 170:215–239

    Article  Google Scholar 

  • Nicolas A, Prinzhofer A (1983) Cumulative or residual origin for the transition zone in ophiolites: structural evidence. J Petrol 24:188–206. doi:10.1093/petrology/24.2.188

    Article  Google Scholar 

  • Niu Y, Collerson KD, Batiza R et al (1999) Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20′N. J Geophys Res 104:7067–7087. doi:10.1029/1998JB900037

    Article  Google Scholar 

  • Perfit MR, Wanless VD, Ridley WI, Klein EM, Smith MC, Goss AR, Hinds JS, Kutza SW, Fornari DJ (2012) Lava geochemistry as a probe into crustal formation at the East Pacific Rise. Oceanography 25(1):89–93. doi:10.5670/oceanog.2012.06

    Article  Google Scholar 

  • Plank T, Langmuir C (1992) Effects of the melting regime on the composition of the oceanic crust. J Geophys Res 97:19749–19770

    Article  Google Scholar 

  • Reid I, Jackson HR (1981) Oceanic spreading rage and crustal thickness. Mar Geophys Res 5:165–172

    Google Scholar 

  • Robinson CJ, Bickle MJ, Minshull TA, White R (2001) Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting. Earth Planet Sci Lett 188:383–398

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12:1–644

    Article  Google Scholar 

  • Saal A, Hauri E, Langmuir C, Perfit M (2002) Vapour under saturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455

    Article  Google Scholar 

  • Shaw D (2006) Trace elements in magmas: a theoretical treatment. 1–243

  • Shaw AM, Hauri EH, Fischer TP et al (2008) Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-Earth water cycle. Earth Planet Sci Lett 275:138–145. doi:10.1016/j.epsl.2008.08.015

    Article  Google Scholar 

  • Shaw AM, Behn MD, Humphris SE et al (2010) Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289:311–322. doi:10.1016/j.epsl.2009.11.018

    Article  Google Scholar 

  • Sparks DW, Parmentier EM (1991) Melt extraction from the mantle beneath spreading centers. Earth Planet Sci Lett 105:368–377. doi:10.1016/0012-821X(91)90178-K

    Article  Google Scholar 

  • Spiegelman M (1993) Geochemical consequences of melt transport in 2-D: the sensitivity of trace elements to mantle dynamics. Earth Planet Sci Lett 139:115–132

    Article  Google Scholar 

  • Standish JJ, Dick HJB, Michael PJ et al (2008) MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E): major element chemistry and the importance of process versus source. Geochem Geophys Geosystems. doi:10.1029/2008GC001959

    Google Scholar 

  • Steele-Macinnis M, Esposito R, Bodnar RJ (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O_CO2 systematics of vapor-saturated silicate melt inclusions. J Petrol 52:2461–2482

    Article  Google Scholar 

  • Tolstoy M, Harding AJ, Orcutt JA (1993) Crustal thickness on the Mid-Atlantic Ridge: bull’s-eye gravity anomalies and focused accretion. Science 262:726

    Article  Google Scholar 

  • Wallace PJ (1998) Water and partial melting in mantle plumes: inferences from the dissolved H 2O concentrations of Hawaiian basaltic magmas. Geophys Res Lett 25:3639–3642. doi:10.1029/98GL02805

    Article  Google Scholar 

  • Warren JM, Shimizu N, Sakaguchi C, Dick H (2009) An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J Geophys Res 114:1–36

    Google Scholar 

  • Waters CL (2010) Temporal and petrogenetic constraints on volcanic accretionary processes at 9-10 degrees North East Pacific Rise. 1–258

  • Waters CL, Sims KWW, Perfit MR et al (2011) Perspective on the genesis of E-MORB from chemical and isotopic heterogeneity at 9–10 N East Pacific rise. J Petrol 52:565–602. doi:10.1093/petrology/egq091

    Article  Google Scholar 

  • White R, Minshull TA, Bickle MJ, Robinson CJ (2001) Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. J Petrol 42:1171–1196. doi:10.1093/petrology/42.6.1171

    Article  Google Scholar 

  • Workman R, Hart S (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Monteleone at the WHOI ion microprobe facility, R. Hervick and L. Williams at ASU ion microprobe facility, and N. Chatterjee at the MIT electron microprobe facility for their analytical assistance. G. Toltin is thanked for his help with sample preparation and H. Dick for supplying the EVZ samples. We thank the editor and an anonymous reviewer for their comments. This work was supported by NSF Grant OCE-0926422 (AMS), OCE-PRF-1226130 (VDW), EAR-09-48666 (MDB), and internal Grants from DOEI at WHOI (VDW & MDB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Wanless.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Supplementary material 2 (EPS 479 kb)

Supplementary material 3 (EPS 487 kb)

Supplementary material 4 (EPS 565 kb)

Supplementary material 5 (EPS 436 kb)

Supplementary material 6 (EPS 367 kb)

Supplementary material 7 (EPS 369 kb)

Supplementary material 8 (EPS 770 kb)

Supplementary material 9 (EPS 466 kb)

Supplementary material 10 (EPS 465 kb)

Supplementary material 11 (EPS 427 kb)

Supplementary material 12 (EPS 491 kb)

Supplementary material 13 (EPS 362 kb)

Supplementary material 14 (EPS 362 kb)

Supplementary material 15 (EPS 362 kb)

Supplementary material 16 (EPS 362 kb)

Supplementary material 17 (EPS 362 kb)

Supplementary material 18 (EPS 362 kb)

Supplementary material 19 (EPS 362 kb)

Supplementary material 20 (EPS 362 kb)

Supplementary material 21 (EPS 362 kb)

Supplementary material 22 (EPS 362 kb)

Supplementary material 23 (EPS 362 kb)

Supplementary material 24 (EPS 362 kb)

Supplementary material 25 (EPS 362 kb)

Supplementary material 26 (EPS 362 kb)

Supplementary material 27 (EPS 409 kb)

Supplementary material 28 (EPS 362 kb)

Supplementary material 29 (EPS 362 kb)

Supplementary material 30 (EPS 362 kb)

Supplementary material 31 (EPS 362 kb)

Supplementary material 32 (EPS 362 kb)

Supplementary material 33 (PDF 713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanless, V.D., Behn, M.D., Shaw, A.M. et al. Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: insights from olivine-hosted melt inclusions. Contrib Mineral Petrol 167, 1005 (2014). https://doi.org/10.1007/s00410-014-1005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1005-7

Keywords

Navigation