Skip to main content

Advertisement

Log in

H2O–CO2 solubility in mafic alkaline magma: applications to volatile sources and degassing behavior at Erebus volcano, Antarctica

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present new equilibrium mixed-volatile (H2O–CO2) solubility data for a phonotephrite from Erebus volcano, Antarctica. H2O–CO2-saturated experiments were conducted at 400–700 MPa, 1,190 °C, and ~NNO + 1 in non-end-loaded piston cylinders. Equilibrium H2O–CO2 fluid compositions were determined using low-temperature vacuum manometry, and the volatile and major element compositions of the glassy run products were determined by Fourier transform infrared spectroscopy and electron microprobe. Results show that the phonotephrite used in this study will dissolve ~0.8 wt% CO2 at 700 MPa and a fluid composition of \( X_{{{\text{H}}_{ 2} {\text{O}}}} \) ~0.4, in agreement with previous experimental studies on mafic alkaline rocks. Furthermore, the dissolution of CO2 at moderate to high \( X_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{fluid}} \) in our experiments exceeds that predicted using lower-pressure experiments on similar melts from the literature, suggesting a departure from Henrian behavior of volatiles in the melt at pressures above 400 MPa. With these data, we place new constraints on the modeling of Erebus melt inclusion and gas emission data and thus the interpretation of its magma plumbing system and the contributions of primitive magmas to passive and explosive degassing from the Erebus phonolite lava lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Behrens H, Jantos N (2001) The effect of anhydrous composition on water solubility in granitic melts. Am Mineral 86:14–20

    Google Scholar 

  • Behrens H, Ohlhorst S, Holtz F, Campenois M (2004) CO2 solubility in dacitic melts equilibrated with H2O–CO2 fluids: implications for modeling the solubility of CO2 in silicic melts. Geochim Cosmochim Acta 68:4678–4703

    Google Scholar 

  • Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. Am Mineral 94:105–120

    Article  Google Scholar 

  • Bindschadler R, Vornberger P, Fleming A, Fox A, Mullins J, Binnie D, Paulsen SJ, Granneman B, Gorodetzky D (2008) The landsat image mosaic of Antarctica. Remote Sens Environ 112:4214–4226

    Article  Google Scholar 

  • Boichu M, Oppenheimer C, Tsanev V, Kyle PR (2010) High temporal resolution SO2 flux measurements at Erebus volcano. J Volcanol Geoth Res 190:325–336

    Article  Google Scholar 

  • Botcharnikov RE, Freise M, Holtz F, Behrens H (2005) Solubility of C-O-H mixtures in natural melts: new experimental data and application range of recent models. Ann Geophys 48:633–646

    Google Scholar 

  • Botcharnikov RE, Behrens H, Holtz F (2006) Solubility and speciation of C–O–H fluids in andesitic melt at T = 1100–1300 °C and P = 200 and 500 MPa. Chem Geol 229:125–143

    Article  Google Scholar 

  • Botcharnikov RE, Holtz F, Behrens H (2007) The effect of CO2 on the solubility of H2O–Cl fluids in andesitic melt. Eur J Mineral 19:671–680

    Article  Google Scholar 

  • Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts Part I: bulk solubility data. Chem Geol 174:225–239

    Article  Google Scholar 

  • Burgisser A, Oppenheimer C, Alletti M, Kyle PR, Scaillet B, Carrol M (2012) Backward tracking of gas chemistry measurements at Erebus volcano. Geochem Geophys Geosyst 13:11. doi:10.1029/2012GC004243

    Article  Google Scholar 

  • Carroll MR, Blank JG (1997) The solubility of H2O in phonolitic melts. Am Mineral 82:549–556

    Google Scholar 

  • Chen Y, Provost A, Schiano P, Cluzel N (2011) The rate of water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 162:625–636

    Article  Google Scholar 

  • Cocheo PA (1993) The solubility of water in basanitic melts at low pressures, Masters thesis. Arizona State University

  • Dasgupta R (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229. doi:10.2138/rmg.2013.75.7

    Article  Google Scholar 

  • Dixon JE (1997) Degassing of alkalic basalts. Am Mineral 82:368–378

    Google Scholar 

  • Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Mineral 80:1339–1342

    Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631

    Google Scholar 

  • Eggler DH, Rosenhauer M (1978) Carbon dioxide in silicate melts: II. Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40 kb. Am J Sci 278:64–94

    Article  Google Scholar 

  • Eschenbacher AJ (1998) Pre-eruptive volatile contents of fractionating, alkaline magma, Mount Erebus, Ross Island, Antarctica, Masters thesis. New Mexico Institute of Mining and Technology. (http://www.ees.nmt.edu/outside/alumni/papers/1998t_eschenbacher_aj.pdf)

  • Fine G, Stolper E (1986) Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci Lett 76:263–278

    Article  Google Scholar 

  • Flowers GC (1979) Correction of Holloway’s (1977) adaptation of the modified Redlich–Kwong equation of state for calculation of the fugacities of molecular species in supercritical fluids of geologic interest. Contrib Mineral Petrol 69:315–318

    Article  Google Scholar 

  • Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In: Fraser D (ed) Thermodynamics in geology. Reidel, Boston, MA, pp 161–181

    Chapter  Google Scholar 

  • Ihinger PD, Hervig RL, McMillan PF (1994) Analytical methods for volatiles in glasses. Rev Mineral 30:67–112

    Google Scholar 

  • Jakobsson S (1997) Solubility of H2O and CO2 in an icelandite at 1400 °C and 10 kilobars. Contrib Mineral Petrol 127:129–135

    Article  Google Scholar 

  • Jendrzejewski N, Trull TW, Pineau F, Javoy M (1997) Carbon solubility in Mid-Ocean Ridge basaltic melt at low pressures (250–1950 bar). Chem Geol 138:81–92

    Article  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Article  Google Scholar 

  • Kyle PR (1981) Mineralogy and geochemistry of a basanite to phonolite sequence at Hut Point Peninsula, Antarctica, based on core from Dry Valley Drilling Project drillholes 1, 2 and 3. J Petrol 22:451–500

    Article  Google Scholar 

  • Kyle PR, Moore JA, Thirlwall MF (1992) Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. J Petrol 33:349–375

    Article  Google Scholar 

  • Lange RA (1994) The effect of H2O, CO2, and F on the density and viscosity of silicate melts. Rev Mineral 30:331–365

    Google Scholar 

  • Lange RA, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 53:2195–2204

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750

    Article  Google Scholar 

  • Lesne P, Scaillet B, Pichavant M, Beny J (2010) The carbon dioxide solubility in alkali basalts: an experimental study. Contrib Mineral Petrol 162:153–168

    Article  Google Scholar 

  • Lesne P, Scaillet B, Pichavant M, Iacono-Marziano G, Beny J (2011a) The H2O solubility of alkali basalts: an experimental study. Contrib Mineral Petrol 162:133–151

    Article  Google Scholar 

  • Lesne P, Kohn S, Blundy JD, Witham F, Botcharnikov R, Behrens H (2011b) Experimental simulation of closed-system degassing in the system basalt-H2O–CO2–S–Cl. J Petrol 52(9):1737–1762. doi:0.1093/petrology/egr027

    Article  Google Scholar 

  • Lowenstern JB (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Miner Deposita 36:490–502. doi:10.1007/s001260100185

    Article  Google Scholar 

  • Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Mineral Geochem 69(1):333–362

    Article  Google Scholar 

  • Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42

    Google Scholar 

  • Moore G, Roggensack K, Klonowski S (2008) A low-pressure–high-temperature technique for the piston-cylinder. Am Mineral 93:48–52

    Article  Google Scholar 

  • Morizet Y, Brooker RA, Kohn SC (2002) CO2 in haplo-phonolite melt: solubility, speciation, and carbonate complexation. Geochim Cosmochim Acta 66(10):1809–1820

    Article  Google Scholar 

  • Mysen BO (1988) Structure and properties of silicate melts. Developments in geochemistry, vol 4. Elsevier, Amsterdam

    Google Scholar 

  • Mysen BO (1990) Effect of pressure, temperature, and bulk composition on the structure and species distribution in depolymerized alkali aluminosilicate melts and quenched melts. J Geophys Res B 95:15733–15744

    Article  Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys Space Phys 20:353–383

    Article  Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604

    Article  Google Scholar 

  • Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317

    Article  Google Scholar 

  • Oppenheimer C, Kyle PR (2008) Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J Volcanol Geotherm Res 177:743–754

    Article  Google Scholar 

  • Oppenheimer C, Lomakina AS, Kyle PR, Kingsbury NG, Boichu M (2009) Pulsatory magma supply to a phonolite lava lake. Earth Planet Sci Lett 284:392–398

    Article  Google Scholar 

  • Oppenheimer C, Moretti R, Kyle PR, Eschenbacher AJ, Lowenstern JB, Hervig RL, Dunbar N (2011) Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet Sci Lett 306:261–271. doi:10.1016/j.epsl.2011.04.005

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Pawley AR, Holloway JR, McMillan PF (1992) The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt. Earth Planet Sci Lett 10:213–225

    Article  Google Scholar 

  • Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272:541–552

    Article  Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (l05 pascals) pressure and at higher temperatures. US Geol Surv Bull, Washington, DC

  • Spera FJ, Bergman SC (1980) Carbon dioxide in igneous petrogenesis: I. Contrib Mineral Petrol 74:55–66

    Article  Google Scholar 

  • Thibault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. Contrib Mineral Petrol 116:216–224

    Article  Google Scholar 

  • USGS and Japan ASTER Program, 2001/2000. ASTER scenes AST_L1A.003:2004567740; AST_L1A.003:2004567742; AST_L1A.003:2005468113; AST_L1A.003:2003371731, 1B, USGS, Sioux Falls, 10/20/2001; 10/20/2001; 09/03/2001; 10/23/2000

  • Vetere F, Botcharnikov RE, Holtz F, Behrens H, Rosa RD (2011) Solubility of H2O and CO2 in shoshonitic melts at 1250 °C and pressures from 50 to 400 MPa: implications for Campi Flegrei magmatic systems. J Volcanol Geotherm Res 202:251–261. doi:10.1016/j.jvolgeores.2011.03.002

    Article  Google Scholar 

  • Wallace PJ (2003) From mantle to atmosphere: magma degassing, explosive eruptions, and volcanic volatile budgets. In: De Vivo B, Bodnar RJ (Eds) Melt inclusions in volcanic systems: methods, applications, and problems, vol 5. Elsevier Science, Amsterdam, Developments in Volcanology, pp 105–127

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Witham F, Blundy J, Kohn SC, Lesne P, Dixon J, Churakov SV, Botcharnikov R (2011) SolEx: a model for mixed COHSCl-fluid solubilities and exsolved gas compositions in basalt. Comput Geosci. doi:10.1016/j.bbr.2011.03.03

    Google Scholar 

Download references

Acknowledgments

This research was supported by the NSF grant EAR-0838563 and EAR-021914 to G.M. and K.R. We also express thanks to the ASU/NASA Space Grant program for supporting K.I. as an undergraduate researcher. Fieldwork on Erebus was supported by grants ANT0838817 and ANT1142083 from the Office of Polar Programs (National Science Foundation). We thank Amber Gullikson and Erika Beam for assistance in performing experiments, Paul Knauth for use of his vacuum lines, Stan Klonowski for manometry measurements, Matthijs van Soest for training on and use of the surface mapping microscope, and Bob Julian and the staff at the Synchrotron Radiation Center at the University of Wisconsin. C.O. thanks the European Research Council for support via the “DEMONS.” We are grateful also to Jackie Dixon, Jacob Lowenstern, Richard Brooker, and an anonymous reviewer for their constructive comments, which helped to refine the arguments presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayla Iacovino.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacovino, K., Moore, G., Roggensack, K. et al. H2O–CO2 solubility in mafic alkaline magma: applications to volatile sources and degassing behavior at Erebus volcano, Antarctica. Contrib Mineral Petrol 166, 845–860 (2013). https://doi.org/10.1007/s00410-013-0877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0877-2

Keywords

Navigation