Skip to main content

Advertisement

Log in

Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: implications for magma evolution and fluid/melt-peridotite reaction

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Melt inclusions and fluid inclusions in the Fangcheng basalt were investigated to understand the magma evolution and fluid/melt-peridotite interaction. Primary silicate melt inclusions were trapped in clinopyroxene and orthopyroxene phenocrysts in the Fangcheng basalt. Three types of melt inclusions (silicate, carbonate, and sulfide) coexisting with fluid inclusions occur in clinopyroxene xenocrysts and clinopyroxene in clinopyroxenite xenoliths. In situ laser-ablation ICP-MS analyses of major and trace element compositions on individual melt inclusions suggest that the silicate melt inclusions in clinopyroxene and orthopyroxene phenocrysts were trapped from the same basaltic magma. The decoupling of major and trace elements in the melt inclusions indicates that the magma evolution was controlled by melt crystallization and contamination from entrapped ultramafic xenoliths. Trace element patterns of melt inclusions are similar to those of the average crust of North China Craton and Yangtze Craton, suggesting a considerable crustal contribution to the magma source. Calculated parental melt of the Fangcheng basalt has features of low MgO (5.96 wt%), high Al2O3 (16.81 wt%), Sr (1,670 ppm), Y (>35 ppm), and high Sr/Y (>40), implying that subducted crustal material was involved in the genesis of the Fangcheng basalt. The coexisting fluid and melt inclusions in clinopyroxene xenocrysts and in clinopyroxene of xenoliths record a rare melt-peridotite reaction, that is olivine + carbonatitic melt1 (rich in Ca) = clinopyroxene + melt2 ± CO2. The produced melt2 is enriched in LREE and CO2 and may fertilize the mantle significantly, which we consider to be the cause for the rapid replacement of lithospheric mantle during the Mesozoic in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55(1–4):301–320

    Article  Google Scholar 

  • Andersen T, O’Reilly SY, Griffin WL (1984) The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism. Contrib Miner Petrol 88(1):72–85

    Article  Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194(1–3):3–23

    Article  Google Scholar 

  • Beccaluva L, Bianchini G, Natali C, Siena F (2009) Continental flood basalts and mantle plumes: a case study of the Northern Ethiopian Plateau. J Petrol 50(7):1377–1403

    Article  Google Scholar 

  • Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism—geochemical evidence from the Lherz orogenic peridotite. J Petrol 31(3):597–628

    Article  Google Scholar 

  • Brearley M, Scarfe CM (1986) Dissolution rates of upper mantle minerals in an alkali basalt melt at high pressure: an experimental study and implications for ultramafic xenolith survival. J Petrol 27(5):1157–1182

    Article  Google Scholar 

  • Brophy JG (1986) The Cold Bay volcanic center, Aleutian volcanic arc. Contrib Miner Petrol 93(3):368–380

    Article  Google Scholar 

  • Brown PE (1989) FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data. Am Mineralogist 74(11–12):1390–1393

    Google Scholar 

  • Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55(1–4):139–158

    Article  Google Scholar 

  • Chiaradia M (2009) Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chem Geol 265(3–4):468–487

    Article  Google Scholar 

  • Dobbs PN, Duncan DJ, Hu S, Shee SR, Colgan E, Brown MA, Smith CB, Allsopp HL (1994) The geology of the Mengyin kimberlites, Shandong, China. In: Meyer HOA, Leonardos OH (eds) Diamonds: characterization, genesis and exploration. Proceedings of 5th international Kimb. conference, Vol. 1, pp 106–115

  • Fan WM, Menzies MA (1992) Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia 16:171–180

    Google Scholar 

  • Fan WM, Zhang HF, Baker J, Jarvis KE, Mason PRD, Menzies MA (2000) On and off the North China Craton: where is the Archaean keel? J Petrol 41(7):933–950

    Article  Google Scholar 

  • Frezzotti M-L (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55(1–4):273–299

    Article  Google Scholar 

  • Frezzotti ML, Touret JLR, Lustenhouwer WJ, Neumann ER (1994) Melt and fluid inclusions in dunite xenoliths from La Gomera, Canary-Islands—tracking the mantle metasomatic fluids. Eur J Mineral 6(6):805–817

    Google Scholar 

  • Frezzotti ML, Andersen T, Neumann ER, Simonsen SL (2002) Carbonatite melt-CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid-rock interaction in the upper mantle. Lithos 64(3–4):77–96

    Article  Google Scholar 

  • Gaetani GA, Watson EB (2000) Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett 183(1–2):27–41

    Article  Google Scholar 

  • Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, Hu YK (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochimica Et Cosmochimica Acta 62(11):1959–1975

    Article  Google Scholar 

  • Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198(3–4):307–322

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Miner Petrol 15(2):103–190

    Article  Google Scholar 

  • Griffin WL, Andi Z, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Mantle Dyn Plate Interact East Asia 27:107–126

    Article  Google Scholar 

  • Halter WE, Pettke T, Heinrich CA, Rothen-Rutishauser B (2002) Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification. Chem Geol 183(1–4):63–86

    Article  Google Scholar 

  • Han SL, Stimson ER, Maxfield FR, Scheraga HA (1980) Conformational study of [leu5]-enkephalin by Laser Raman spectroscopy. Int J Pept Protein Res 16(3):173–182

    Article  Google Scholar 

  • Hansteen TH, Andersen T, Neumann E-R, Jelsma H (1991) Fluid and silicate glass inclusions in ultramafic and mafic xenoliths from Hierro, Canary Islands: implications for mantle metasomatism. Contrib Miner Petrol 107(2):242–254

    Article  Google Scholar 

  • Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audetat A, Gunther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67(18):3473–3497

    Article  Google Scholar 

  • Hidas K, Szabo C, Guzmics T, Bali E, Zajacz Z, Kovacs I (2007) Melt/wallrock interaction shown by silicate melt inclusions in peridotite xenoliths from Pannonian Basin. Geochim Cosmochim Acta 71(15):A403–A403

    Google Scholar 

  • Hidas K, Guzmics T, Szabo C, Kovacs I, Bodnar RJ, Zajacz Z, Nedli Z, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary). Chem Geol 274(1–2):1–18

    Article  Google Scholar 

  • Kelemen PB, Joyce DB, Webster JD, Holloway JR (1990) Reaction between ultramafic rock and fractionating basaltic magma.2. Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150-degrees-C-1050-degrees-C and 5 Kb. J Petrol 31(1):99–134

    Article  Google Scholar 

  • Kent AJR (2008) Melt inclusions in basaltic and related volcanic rocks. Miner Incl Volcan Process 69:273–331

    Google Scholar 

  • Kuno H (1950) Petrology of Hakone volcano and the adjacent areas, Japan. Geol Soc Am Bull 61(9):957

    Article  Google Scholar 

  • Kusky TM, Windley BF, Zhai M-G (2007) Tectonic evolution of the North China Block: from orogen to craton to orogen. Geol Soc Lond Spec Publ 280(1):1–34

    Article  Google Scholar 

  • Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of greater-than-or-equal-to 3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology 20(4):339–342

    Article  Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3–4):581–593

    Article  Google Scholar 

  • Marsh BD (1976) Some Aleutian andesites: their nature and source. J Geol 84(1):27–45

    Article  Google Scholar 

  • Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of hawaiian parental liquids. J Petrol 52(7–8):1243–1263

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Menzies MA, Xu YG (1998) Geodynamics of the North China Craton. Mantle Dyn Plate Interact East Asia 27:155–165

    Article  Google Scholar 

  • Menzies M, Xu YG, Zhang HF, Fan WM (2007) Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96(1–2):1–21

    Article  Google Scholar 

  • Myers JD, Marsh BD, Sinha AK (1986) Geochemical and strontium isotopic characteristics of parental Aleutian arc magmas: evidence from the basaltic lavas of Atka. Contrib Miner Petrol 94(1):1–11

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Miner Petrol 139(5):541–554

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration Melting of Metabasalt at 8–32 kbar: implications for Continental Growth and Crust-Mantle Recycling. J Petrol 36(4):891–931

    Article  Google Scholar 

  • Redfern SAT, Henderson CMB, Wood BJ, Harrison RJ, Knight KS (1996) Determination of olivine cooling rates from metal-cation ordering. Nature 381(6581):407–409

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions, reviews in mineralogy, vol 12. Mineralogy Society of America, Washington

    Google Scholar 

  • Rudnick RL, Shan G, Ling WL, Liu YS, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77(1–4):609–637

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Joron JL (1992) Melt and fluid inclusions in basalts and xenoliths from Tahaa-Island, society archipelago—evidence for a metasomatized upper mantle. Earth Planet Sci Lett 111(1):69–82

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Weis D, Mattielli N (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: implications for metasomatism in the oceanic upper mantle. Earth Planet Sci Lett 123(1–3):167–178

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H < sub >2</sub >O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113(2):143–166

    Article  Google Scholar 

  • Streck MJ, Leeman WP, Chesley J (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35(4):351–354

    Article  Google Scholar 

  • Su L, Song SG, Shu GM (2009) Silicate melt inclusions in olivine from the Yushigou harzburgite, North Qilian: evidence for dynamic partial melting in mantle. Geochim Cosmochim Acta 73(13):A1287–A1287

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ, pp 313–345

  • Szabo C, Hidas K, Bali E, Zajacz Z, Kovacs I, Yang K, Guzmics T, Torok K (2009) Melt-wall rock interaction in the mantle shown by silicate melt inclusions in peridotite xenoliths from the central Pannonian Basin (western Hungary). Island Arc 18(2):375–400

    Article  Google Scholar 

  • Thiery R, van den Kerkhof AM, Dubessy J (1994) vX properties of CH 4 -CO 2 and CO 2 -N 2 fluid inclusions; modelling for T<31 degrees C and P<400 bars. Eur J Mineral 6(6):753–771

    Google Scholar 

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55(1–4):27–47

    Article  Google Scholar 

  • Wang C, Jin ZM, Gao S, Zhang JF, Zheng S (2010) Eclogite-melt/peridotite reaction: experimental constrains on the destruction mechanism of the North China Craton. Sci China-Earth Sci 53(6):797–809

    Article  Google Scholar 

  • Wilde SA, Zhou XH, Nemchin AA, Sun M (2003) Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31(9):817–820

    Article  Google Scholar 

  • Wilson DS, Clague DA, Sleep NH, Morton JL (1988) Implications of magma convection for the size and temperature of magma chambers at fast spreading ridges. J Geophys Res 93(B10):11974–11984

    Article  Google Scholar 

  • Wu FY, Walker RJ, Ren XW, Sun DY, Zhou XH (2003) Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol 196(1–4):107–129

    Article  Google Scholar 

  • Wu F-Y, Lin J-Q, Wilde SA, Zhang XO, Yang J-H (2005a) Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233(1–2):103–119

    Article  Google Scholar 

  • Wu FY, Yang JH, Liu XM, Li TS, Xie LW, Yang YH (2005b) Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: implications for early crustal evolution of the North China Craton. Chin Sci Bull 50(21):2473–2480

    Article  Google Scholar 

  • Xu YG (2001) Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Phys Chem Earth Part A Solid Earth Geodesy 26(9–10):747–757

    Article  Google Scholar 

  • Yan MC, Chi QH (1997) Chemical composition of eastern China crust and crustal rocks. Scientific Press, Beijing (in Chinese)

  • Yang KF, Liu S, Hu FF, Fan HR (2008) Ore-forming fluids of Saiwusu gold deposit, Inner Mongolia, China. Acta Petrologica Sinica 24(9):2079–2084

    Google Scholar 

  • Ying JF, Zhang HF, Kita N, Morishita Y, Shimoda G (2006) Nature and evolution of late cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth Planet Sci Lett 244(3–4):622–638

    Article  Google Scholar 

  • Zajacz Z, Halter W (2007) LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification, data analysis and mineral/melt partitioning. Geochim Cosmochim Acta 71(4):1021–1040

    Article  Google Scholar 

  • Zhang HF (2005) Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth Planet Sci Lett 237(3–4):768–780

    Article  Google Scholar 

  • Zhang HF (2009) Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull 54(19):3417–3437

    Article  Google Scholar 

  • Zhang HF, Sun M (2002) Geochemistry of mesozoic basalts and mafic dikes, southeastern North China craton, and tectonic implications. Int Geol Rev 44(4):370–382

    Article  Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Yin JF (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Miner Petrol 144(2):241–253

    Article  Google Scholar 

  • Zhang HF, Ying JF, Xu P, Ma YG (2004) Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton: implication for replacement process of lithospheric mantle. Chin Sci Bull 49(9):961–966

    Google Scholar 

  • Zhang HF, Ying JF, Shimoda G, Kita NT, Morishita Y, Shao JA, Tang YH (2007) Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton: evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths. Lithos 96(1–2):67–89

    Article  Google Scholar 

  • Zhang HF, Goldstein SL, Zhou XH, Sun M, Zheng JP, Cai Y (2008) Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Miner Petrol 155(3):271–293

    Article  Google Scholar 

  • Zhang HF, Nakamura E, Kobayashi K, Ying JF, Tang YJ (2010) Recycled crustal melt injection into lithospheric mantle: implication from cumulative composite and pyroxenite xenoliths. Int J Earth Sci 99(6):1167–1186

    Article  Google Scholar 

  • Zhao GC, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambr Res 107(1–2):45–73

    Article  Google Scholar 

  • Zhao GC, Sun M, Wilde SA (2002) Reconstruction of a pre-Rodinia supercontinent: new advances and perspectives. Chin Sci Bull 47(19):1585–1588

    Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136(2):177–202

    Article  Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M (1998) Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. Int Geol Rev 40(6):471–499

    Article  Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57(1):43–66

    Article  Google Scholar 

  • Zheng JP, Griffin WL, O’Reilly SY, Yang JS, Li TF, Zhang M, Zhang RY, Liou JG (2006) Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J Petrol 47(11):2233–2256

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Li ZJ (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37(1):3–21

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Malpas J, Aitchison J, Sun M, Bai WJ, Hu XF (2001) Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China). J Asian Earth Sci 19(4):517–534

    Article  Google Scholar 

Download references

Acknowledgments

We thank Profs. Shuguang Li and Xiaoyong Yang for assistance during field work. We are grateful to Dr. Fangzhen Teng for constructive comments and English proofreading at an early stage of the manuscript, and Dr. John Hora for the final English polishing. We acknowledge constructive reviews by Drs. Alfons van den Kerkhof, Hongfu Zhang and one anonymous reviewer, and editorial handing by Prof. Hoefs. This study was financially supported by the Chinese grants NSFC90814008, 2009CB825002, NSFC40921002, KZCX1-YW-15-3, Anhui 2012-k-04, and the Hundred Talent Program of the CAS to YX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Xiao.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Xiao, Y., Gao, Y. et al. Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: implications for magma evolution and fluid/melt-peridotite reaction. Contrib Mineral Petrol 165, 885–901 (2013). https://doi.org/10.1007/s00410-012-0840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0840-7

Keywords

Navigation