Skip to main content

Advertisement

Log in

Klotho Regulates Cigarette Smoke-Induced Autophagy: Implication in Pathogenesis of COPD

  • COPD
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

Chronic obstructive pulmonary disease is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a fundamental cellular process that eliminates long-lived proteins and damaged organelles through lysosomal degradation pathway, though its role in human diseases remains unclear. We hypothesized that an anti-aging protein, Klotho plays an important role in regulating autophagy in response to cigarette smoke (CS).

Methods

Autophagy was measured by detecting LC3-I and LC3-II expressions. The regulation of autophagy expression by cigarette smoke extract (CSE) was studied in vitro, and small-interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced autophagy. Protein levels and phosphorylation were measured by Western blot assay.

Results

CS exposure resulted in induction of autophagy in alveolar macrophages. Pretreatment of cells with Klotho attenuated CS-induced autophagy whereas knockdown of Klotho augmented CS-induced autophagy. Klotho inhibited phosphorylation of ERK, Akt, and IGF-1 in CSE-stimulated cells.

Conclusions

These data suggest that Klotho plays a critical role in the regulation of CS-induced autophagy and have important implications in understanding the mechanisms of CS-induced cell death and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ford ES, Mannino DM, Zhao G et al (2012) Changes in mortality among United States adults with chronic obstructive pulmonary disease in two national cohorts recruited during 1971 through 1975 and 1988 through. Chest 141:101–110

    Article  PubMed  Google Scholar 

  2. Lopez AD, Murray CC et al (1998) The global burden of disease, 1990–2020. Nat Med 4:1241–1243

    Article  CAS  PubMed  Google Scholar 

  3. Rabe KF, Hurd S, Anzueto A et al (2007) Global initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:523–555

    Article  Google Scholar 

  4. Barnes PJ (2000) Chronic obstructive pulmonary disease. N Engl J Med 343:269–280

    Article  CAS  PubMed  Google Scholar 

  5. Coppé JP, Desprez PY et al (2010) The senescence associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hara H, Araya J et al (2012) Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol 46:306–312

    Article  CAS  PubMed  Google Scholar 

  7. Fujii S, Hara H, Araya J, et al (2012) Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 1:630–641

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kroemer G, Marinõ G et al (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ogata M, Hino S, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaachouay H, Ohneseit P, Toulany M et al (2011) Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol 99:287–292

    Article  CAS  PubMed  Google Scholar 

  11. Kim HP, Wang X, Chen ZH et al (2008) Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1. Autophagy 4:887–895

    Article  CAS  PubMed  Google Scholar 

  12. Chen ZH, Kim HP, Sciurba FC et al (2008) Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE 3:e3316

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  14. Nabeshima Y (2002) Klotho: a fundamental regulator of aging. Ageing Res Rev 1:627–638

    Article  CAS  PubMed  Google Scholar 

  15. Kurosu H, Yamamoto M, Clark JD et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koh N, Fujimori T, Nishiguchi S et al (2001) Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015–1020

    Article  CAS  PubMed  Google Scholar 

  17. Kamitani A, Yamada H, Kinuta M et al (2002) Distribution of dynamins in testis and their possible relation to spermatogenesis. Biochem Biophys Res Commun 294:261–267

    Article  CAS  PubMed  Google Scholar 

  18. Miyamoto K, Ito M, Segawa H et al (2003) Molecular targets of hyperphosphataemia in chronic renal failure. Nephrol Dial Transplant 18(Suppl 3):iii79–iii80

    CAS  PubMed  Google Scholar 

  19. Yamamoto M, Clark JD, Pastor JV et al (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rakugi H, Matsukawa N, Ishikawa K et al (2007) Antioxidative effect of Klotho on endothelial cells through cAMP activation. Endocrine 31:82–87

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Wang Y, Gao W et al (2015) Klotho reduction in alveolar macrophages contributes to cigarette smoke extract-induced inflammation in chronic obstructive pulmonary disease. J Biol Chem 290:27890–27900

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carp H, Janoff A (1978) Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis 118:617–621

    CAS  PubMed  Google Scholar 

  23. Kode A, Yang SR, Rahman I (2006) Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells. Respir Res 7:132–152

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moodie FM, Marwick JA, Anderson CS et al (2004) Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-ƙB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 18:1897–1899

    CAS  PubMed  Google Scholar 

  25. Yang SR, Chida AS, Bauter MR et al (2006) Cigarette smoke induces proinflammatory cytokine release by activation of NF-ƙB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol 291:L46–L57

    Article  CAS  PubMed  Google Scholar 

  26. Chen ZH, Lam HC, Jin Y et al (2010) Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA 107:18880–18885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hwang JW, Chung S et al (2010) Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: implication in pathogenesis of COPD. Arch Biochem Biophys 500:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mizushima N, Komatsu M et al (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  29. Shimizu S, Kanaseki T et al (2004) Role of Bcl-2 family proteins in a nonapoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    Article  CAS  PubMed  Google Scholar 

  30. Choi AM, Ryter SW et al (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  31. Lu L, Katsaros D, Wiley A et al (2008) Klotho expression in epithelial ovarian cancer and its association with insulin-like growth factors and disease progression. Cancer Investig 26:185–192

    Article  CAS  Google Scholar 

  32. Wolf I, Levanon-Cohen S, Bose S et al (2008) Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27:7094–70105

    Article  CAS  PubMed  Google Scholar 

  33. Abramovitz L, Rubinek T, Ligumsky H et al (2011) KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res 17:4254–4266

    Article  CAS  PubMed  Google Scholar 

  34. Kooijman R (2006) Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine Growth Factor Rev 17:305–323

    Article  CAS  PubMed  Google Scholar 

  35. Choi JE, Lee SS et al (2009) Insulin-like growth factor-I receptor blockade improves outcome in mouse model of lung injury. Am J Respir Crit Care Med 179:212–219

    Article  CAS  PubMed  Google Scholar 

  36. Chand HS, Woldegiorgis Z, Schwalm K et al (2012) Acute inflammation induces insulin-like growth factor-1 to mediate Bcl-2 and Muc5ac expression in airway epithelial cells. Am J Respir Cell Mol Biol 47:784–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kythreotis P, Kokkini A et al (2009) Plasma leptin and insulin-like growth factor I levels during acute exacerbations of chronic obstructive pulmonary disease. BMC Pulm Med 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pilewski JM, Liu L, Henry AC et al (2005) Insulin-like growth factor binding proteins 3 and 5 are overexpressed in idiopathic pulmonary fibrosis and contribute to extracellular matrix deposition. Am J Pathol 166:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248

    Article  CAS  PubMed  Google Scholar 

  40. Arico S, Petiot A, Bauvy C et al (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246

    Article  CAS  PubMed  Google Scholar 

  41. Degtyarev M, De Mazière A, Orr C et al (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183:101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mammucari C, Milan G, Romanello V et al (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–471

    Article  CAS  PubMed  Google Scholar 

  43. Nyunoya T, Monick MM, Klingelhutz A et al (2006) Cigarette smoke induces cellular senescence. Am J Respir Cell Mol Biol 35:681–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15:217–224

    Article  CAS  PubMed  Google Scholar 

  45. Karrasch S, Holz O, Jorres RA (2008) Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med 102:1215–1230

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yujie Wang for technical assistance and Xin Yao for helpful discussion and assistance.

Funding

This study was funded by the Introduction of Talent (YR201107) and the Natural Science Program of Anhui Universities (No. KJ2017A274) .

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingling Li or Zhiwei Lu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report. The authors alone are responsible for the content and writing of the paper.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Lingling Li, Min Zhang and Liqin Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, M., Zhang, L. et al. Klotho Regulates Cigarette Smoke-Induced Autophagy: Implication in Pathogenesis of COPD. Lung 195, 295–301 (2017). https://doi.org/10.1007/s00408-017-9997-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-9997-1

Keywords

Navigation