Skip to main content
Log in

Volatile Organic Compounds in Exhaled Breath of Idiopathic Pulmonary Fibrosis for Discrimination from Healthy Subjects

  • Interstitial lung disease
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose Human breath analysis is proposed with increasing frequency as a useful tool in clinical application. We performed this study to find the characteristic volatile organic compounds (VOCs) in the exhaled breath of patients with idiopathic pulmonary fibrosis (IPF) for discrimination from healthy subjects. Methods VOCs in the exhaled breath of 40 IPF patients and 55 healthy controls were measured using a multi-capillary column and ion mobility spectrometer. The patients were examined by pulmonary function tests, blood gas analysis, and serum biomarkers of interstitial pneumonia. Results We detected 85 VOC peaks in the exhaled breath of IPF patients and controls. IPF patients showed 5 significant VOC peaks; p-cymene, acetoin, isoprene, ethylbenzene, and an unknown compound. The VOC peak of p-cymene was significantly lower (p < 0.001), while the VOC peaks of acetoin, isoprene, ethylbenzene, and the unknown compound were significantly higher (p < 0.001 for all) compared with the peaks of controls. Comparing VOC peaks with clinical parameters, negative correlations with VC (r =−0.393, p = 0.013), %VC (r =−0.569, p < 0.001), FVC (r = −0.440, p = 0.004), %FVC (r =−0.539, p < 0.001), DLco (r =−0.394, p = 0.018), and %DLco (r =−0.413, p = 0.008) and a positive correlation with KL-6 (r = 0.432, p = 0.005) were found for p-cymene. Conclusion We found characteristic 5 VOCs in the exhaled breath of IPF patients. Among them, the VOC peaks of p-cymene were related to the clinical parameters of IPF. These VOCs may be useful biomarkers of IPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. King TE Jr, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. The Lancet 378:1949–1961

    Article  Google Scholar 

  2. Harari S, Caminati A (2010) IPF: new insight on pathogenesis and treatment. Allergy 65:537–553

    Article  CAS  PubMed  Google Scholar 

  3. Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345:517–525

    Article  CAS  PubMed  Google Scholar 

  4. Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  Google Scholar 

  5. Rattray NJ, Hamrang Z, Trivedi DK et al (2014) Taking your breath away: metabolomics breathes life in to personalized medicine. Trends Biotechnol 32:538–548

    Article  CAS  PubMed  Google Scholar 

  6. Westhoff M, Litterst P, Maddula S et al (2010) Differentiation of chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control group by breath analysis using ion mobility spectrometry. Int J Ion Mobility Spectrum 13:131–139

    Article  CAS  Google Scholar 

  7. Van Berkel JJ, Dallinga JW, Möller GM et al (2010) A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med 104:557–567

    Article  PubMed  Google Scholar 

  8. Besa V, Teschler H, Kurth I et al (2015) Exhaled volatile organic compounds discriminate patients with chronic obstructive pulmonary disease from healthy subjects. Int J Chron Obstruct Pulmon Dis 10:399–406

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dragonieri S, Schot R, Mertens BJ et al (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120:856–862

    Article  PubMed  Google Scholar 

  10. Bunkowski A, Boedeker B, Bader S et al (2009) MCC/IMS signals in human breath related to sarcoidosis: results of a feasibility study using an automated peak finding procedure. J Breath Res 3:046001

    Article  CAS  PubMed  Google Scholar 

  11. Westhoff M, Litterst P, Freitag L et al (2007) Ion mobility spectrometry in the diagnosis of sarcoidosis: Results of a feasibility study. J Physiol Pharmacol 58:739–751

    PubMed  Google Scholar 

  12. Phillips M, Cataneo RN, Condos R et al (2007) Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis 87:44–52

    Article  CAS  PubMed  Google Scholar 

  13. Phillips M, Basa-Dalay V, Blais J et al (2012) Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis 92:314–320

    Article  PubMed  Google Scholar 

  14. Kamboures MA, Blake DR, Cooper DM et al (2005) Breath sulfides and pulmonary function in cystic fibrosis. Proc Natl Acad Sci USA 102:15762–15767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McGrath LT, Patrick R, Mallon P et al (2000) Breath isoprene during acute respiratory exacerbation in cystic fibrosis. Eur Respir J 16:1065–1069

    Article  CAS  PubMed  Google Scholar 

  16. Cakir Y, Métraillier L, Baumbach JI et al (2014) Signals in asbestos related diseases in human breath—preliminary results. Int J Ion Mobil Spec 17:87–94

    Article  CAS  Google Scholar 

  17. Philips M, Cataneo RN, Cummin ARC et al (2003) Detection of lung cancer with volatile markers in the breath. Chest 123:2115–2123

    Article  Google Scholar 

  18. Machado RF, Raskowski D, Deffenderfer O et al (2005) Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 171:1286–1291

    Article  PubMed  PubMed Central  Google Scholar 

  19. Westhoff M, Litterst P, Freitag L et al (2009) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 64:744–748

    Article  CAS  PubMed  Google Scholar 

  20. Darwiche K, Baumbach JI, Sommerwerck U et al (2011) Bronchoscopically obtained volatile biomarkers in lung cancer. Lung 189:445–452

    Article  CAS  PubMed  Google Scholar 

  21. Kanoh S, Kobayashi H, Motoyoshi K (2005) Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 128:2387–2392

    Article  CAS  PubMed  Google Scholar 

  22. Buszewski B, Grzywinski D, Ligor T et al (2013) Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques. Bioanalysis 5: 2287–2306

    Article  CAS  PubMed  Google Scholar 

  23. Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res 3:034001

    Article  PubMed  Google Scholar 

  24. Hauschild AC, Schneider T, Pauling J et al (2012) Computational methods for metabolomic data analysis of ion mobility spectrometry data-reviewing the state of art. Metabolites 2: 733–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fink T, Baumbach JI, Kreuer S (2014) Ion mobility spectrometry in breath research. J Breath Res 8:027104

    Article  PubMed  Google Scholar 

  26. Cumeras R, Figueras E, Davis CE et al (2015) Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 140:1376–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cumeras R, Figueras E, Davis CE et al (2015) Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst 140:1391–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foster WM, Jiang L, Stetkiewicz PT et al (1996) Breath isoprene: temporal changes in respiratory output after exposure to ozone. J Appl Physiol 80:706–710

    CAS  PubMed  Google Scholar 

  29. Jalali M, Zare Sakhvidi MJ, Bahrami A et al (2016) Oxidative stress biomarkers in exhaled breath of workers exposed to crystalline silica dust by SPME-GC-MS. J Res Health Sci 16:153–161

    PubMed  Google Scholar 

  30. Cheresh P, Kim SJ, Tulasiram S et al (2013) Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta 1832: 1028–1040

    Article  CAS  PubMed  Google Scholar 

  31. Chan PC, Haseman JK, Mahleri J et al (1998) Tumor induction in F344/N rats and B6C3F1 mice following inhalation exposure to ethylbenzene. Toxicol Lett 99:23–32

    Article  CAS  PubMed  Google Scholar 

  32. Saghir SA, Zhang F, Rick DL et al (2010) In vitro metabolism and covalent binding of ethylbenzene to microsomal protein as a possible mechanism of ethylbenzene-induced mouse lung tumorigenesis. Regul Toxicol Pharmacol 57:129–135

    Article  CAS  PubMed  Google Scholar 

  33. Saalberg Y, Wolff M (2016) VOC breath biomarkers in lung cancer. Clin Chim Acta 459:5–9

    Article  CAS  PubMed  Google Scholar 

  34. Song G, Qin T, Liu H et al (2010) Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 67:227–231

    Article  PubMed  Google Scholar 

  35. Xie G, Chen N, Soromou LW et al (2012) p-Cymene protects mice against lipopolysaccharide-induced acute lung injury by inhibiting inflammatory cell activation. Molecules 17:8159–8173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Yusuke Yonemura (Harada Corp, Osaka, Japan) for his technical supports. A part of the work on this paper (JIBB) has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (Sonderforschungsbereich) SFB 876 “Providing Information by Resource-Constrained Analysis”, project TB1 “Resource-Constrained Analysis of Spectrometry Data”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Yamada.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest in connection with this article.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, Yi., Yamada, G., Otsuka, M. et al. Volatile Organic Compounds in Exhaled Breath of Idiopathic Pulmonary Fibrosis for Discrimination from Healthy Subjects. Lung 195, 247–254 (2017). https://doi.org/10.1007/s00408-017-9979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-9979-3

Keywords

Navigation