Skip to main content

Advertisement

Log in

Decreased TGF-β1 and VEGF Release in Cystic Fibrosis Platelets: Further Evidence for Platelet Defects in Cystic Fibrosis

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Cystic fibrosis (CF) patients suffer from chronic lung inflammation. This inflammation may activate platelets. There are limited data on the role of platelet-secreted cytokines in CF. Platelet cytokines with inflammatory effects include vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). As levels of these cytokines are tenfold greater in serum than plasma due to platelet release, serum levels may be one index of platelet content, but a more specific index is release during the aggregation of isolated platelets. We postulated that altered release of these platelet cytokines occurs in CF.

Methods

We obtained sera and plasma from CF outpatients (n = 21) and from healthy controls (n = 20), measured VEGF and TGF-β1, assessed for correlations with platelet number, analyzed cytokine release during platelet aggregation to collagen, and analyzed differences in maximal platelet aggregation.

Results

Platelet number and maximal aggregation levels were higher in CF. Plasma and serum levels of TGF-β1 and VEGF were higher in CF, but these levels were similar after adjusting for platelet number (serum cytokines correlated with platelet count). The release of VEGF and TGF-β1 during aggregation was decreased in CF platelets (by 52 and 29 %, respectively).

Conclusion

Platelet release is not a source of the elevated blood proinflammatory cytokines TGF-β1 and VEGF in CF, as platelets from CF patients actually release less of these cytokines. These data provide further evidence for platelet defects in CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

NSAID:

Nonsteroidal anti-inflammatory drug

PRP:

Platelet-rich plasma

PPP:

Platelet-poor plasma

TGF-β1 :

Transforming growth factor-beta 1

VEGF:

Vascular endothelial growth factor

References

  1. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. New Engl J Med 352(19):1992–2001

    Article  CAS  PubMed  Google Scholar 

  2. Stoltz DA, Meyerholz DK, Welsh MJ (2015) Origins of cystic fibrosis lung disease. New Engl J Med 372(16):1574–1575

    Article  PubMed  Google Scholar 

  3. O’Sullivan BP, Linden MD, Frelinger AL 3rd et al (2005) Platelet activation in cystic fibrosis. Blood 105(12):4635–4641

    Article  PubMed  Google Scholar 

  4. O’Sullivan BP, Michelson AD (2006) The inflammatory role of platelets in cystic fibrosis. Am J Respir Crit Care Med 173(5):483–490

    Article  PubMed  Google Scholar 

  5. Sturm A, Hebestreit H, Koenig C, Walter U, Grossmann R (2010) Platelet proinflammatory activity in clinically stable patients with CF starts in early childhood. J Cyst Fibros 9(3):179–186

    Article  CAS  PubMed  Google Scholar 

  6. Stead RJ, Barradas MA, Mikhailidis DP, Jeremy JY, Hodson ME, Batten JC, Dandona P (1987) Platelet hyperaggregability in cystic fibrosis. Prostaglandins Leukot Med 26(2):91–103

    Article  CAS  PubMed  Google Scholar 

  7. Agam G, Aviram M, Zilberman-Kaufman M, Rothstein A, Livne AA (1995) Cyclic AMP-related and cation-affected human platelet chloride transport regulation. Eur J Clin Chem Clin Biochem 33(6):329–335

    CAS  PubMed  Google Scholar 

  8. Mattoscio D, Evangelista V, De Cristofaro R et al (2010) Cystic fibrosis transmembrane conductance regulator (CFTR) expression in human platelets: impact on mediators and mechanisms of the inflammatory response. FASEB J 24(10):3970–3980

    Article  CAS  PubMed  Google Scholar 

  9. Falco A, Romano M, Iapichino L, Collura M, Davi G (2004) Increased soluble CD40 ligand levels in cystic fibrosis. J Thromb Haemost 2(4):557–560

    Article  CAS  PubMed  Google Scholar 

  10. Mikhailidis DP, Stead RJ, Barradas MA, Hodson ME, Batten JC, Dandona P (1990) Platelet abnormalities in patients with cystic fibrosis and obligate heterozygotes. Haematologica 75(2):137–140

    CAS  PubMed  Google Scholar 

  11. Zhao C, Su EM, Yang X, Gao Z, Li L, Wu H, Jiang Y, Su X (2013) Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice. PLoS One 8(12):e82683

    Article  PubMed  PubMed Central  Google Scholar 

  12. Konig B, Jaeger KE, Konig W (1994) Induction of inflammatory mediator release (12-hydroxyeicosatetraenoic acid) from human platelets by Pseudomonas aeruginosa. Int Arch Allergy Immunol 104(1):33–41

    Article  CAS  PubMed  Google Scholar 

  13. Uysal P, Tuncel T, Olmez D, Babayigit A, Karaman O, Uzuner N (2011) The role of mean platelet volume predicting acute exacerbations of cystic fibrosis in children. Ann Thorac Med 6(4):227–230

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hasselbalch HC (2012) Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 119(14):3219–3225

    Article  CAS  PubMed  Google Scholar 

  15. Schweighofer B, Testori J, Sturtzel C, Sattler S, Mayer H, Wagner O, Bilban M, Hofer E (2009) The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation. Thromb Haemost 102(3):544–554

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor AW (2009) Review of the activation of TGF-beta in immunity. J Leukoc Biol 85(1):29–33

    Article  CAS  PubMed  Google Scholar 

  17. Watts KD, McColley SA (2011) Elevated vascular endothelial growth factor is correlated with elevated erythropoietin in stable, young cystic fibrosis patients. Pediatr Pulmonol 46(7):683–687

    Article  PubMed  Google Scholar 

  18. McColley SA, Stellmach V, Boas SR, Jain M, Crawford SE (2000) Serum vascular endothelial growth factor is elevated in cystic fibrosis and decreases with treatment of acute pulmonary exacerbation. Am J Respir Crit Care Med 161(6):1877–1880

    Article  CAS  PubMed  Google Scholar 

  19. Tirelli AS, Colombo C, Torresani E et al (2013) Effects of treatment in the levels of circulating cytokines and growth factors in cystic fibrosis and dialyzed patients by multi-analytical determination with a biochip array platform. Cytokine 62(3):413–420

    Article  CAS  PubMed  Google Scholar 

  20. Eickmeier O, Boom L, Schreiner F et al (2013) Transforming growth factor beta1 genotypes in relation to TGFbeta1, interleukin-8, and tumor necrosis factor alpha in induced sputum and blood in cystic fibrosis. Mediat Inflamm 2013:913135

    Article  CAS  Google Scholar 

  21. Harris WT, Muhlebach MS, Oster RA, Knowles MR, Clancy JP, Noah TL (2011) Plasma TGF-beta(1) in pediatric cystic fibrosis: potential biomarker of lung disease and response to therapy. Pediatr Pulmonol 46(7):688–695

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zimmermann R, Koenig J, Zingsem J, Weisbach V, Strasser E, Ringwald J, Eckstein R (2005) Effect of specimen anticoagulation on the measurement of circulating platelet-derived growth factors. Clin Chem 51(12):2365–2368

    Article  CAS  PubMed  Google Scholar 

  23. Jelkmann W (2001) Pitfalls in the measurement of circulating vascular endothelial growth factor. Clin Chem 47(4):617–623

    CAS  PubMed  Google Scholar 

  24. Schwarz KB, Rosensweig J, Sharma S, Jones L, Durant M, Potter C, Narkewicz MR (2003) Plasma markers of platelet activation in cystic fibrosis liver and lung disease. J Pediatr Gastroenterol Nutr 37(2):187–191

    Article  CAS  PubMed  Google Scholar 

  25. Maloney JP, Silliman CC, Ambruso DR, Wang J, Tuder RM, Voelkel NF (1998) In vitro release of vascular endothelial growth factor during platelet aggregation. Am J Physiol 275(3 Pt 2):H1054–H1061

    CAS  PubMed  Google Scholar 

  26. Cattaneo M, Cerletti C, Harrison P et al (2013) Recommendations for the standardization of light transmission aggregometry: a consensus of the working party from the platelet physiology subcommittee of SSC/ISTH. J Thromb Haemost 11:1183–1189

    Article  Google Scholar 

  27. Jonnalagadda D, Izu LT, Whiteheart SW (2012) Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 120(26):5209–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ollivier V, Syvannarath V, Gros A, Butt A, Loyau S, Jandrot-Perrus M, Ho-Tin-Noe B (2014) Collagen can selectively trigger a platelet secretory phenotype via glycoprotein VI. PLoS One 9(8):e104712

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kato H, Adachi S, Doi T et al (2010) Mechanism of collagen-induced release of 5-HT, PDGF-AB and sCD40L from human platelets: role of HSP27 phosphorylation via p44/p42 MAPK. Thromb Res 126(1):39–43

    Article  CAS  PubMed  Google Scholar 

  30. Coppinger JA, O’Connor R, Wynne K et al (2007) Moderation of the platelet releasate response by aspirin. Blood 109(11):4786–4792

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Thornton MA, Kowalska MA et al (2001) Localization of distal regulatory domains in the megakaryocyte-specific platelet basic protein/platelet factor 4 gene locus. Blood 98(3):610–617

    Article  CAS  PubMed  Google Scholar 

  32. Kropf J, Schurek JO, Wollner A, Gressner AM (1997) Immunological measurement of transforming growth factor-beta 1 (TGF-beta1) in blood; assay development and comparison. Clin Chem 43(10):1965–1974

    CAS  PubMed  Google Scholar 

  33. Okuda K, Kawase T, Momose M, Murata M, Saito Y, Suzuki H, Wolff LF, Yoshie H (2003) Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol 74(6):849–857

    Article  CAS  PubMed  Google Scholar 

  34. Salgado R, Benoy I, Bogers J, Weytjens R, Vermeulen P, Dirix L, Van Marck E (2001) Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study. Angiogenesis 4(1):37–43

    Article  CAS  PubMed  Google Scholar 

  35. Salven P, Orpana A, Joensuu H (1999) Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin Cancer Res 5(3):487–491

    CAS  PubMed  Google Scholar 

  36. Pieroni L, Finamore F, Ronci M et al (2011) Proteomics investigation of human platelets in healthy donors and cystic fibrosis patients by shotgun nUPLC-MSE and 2DE: a comparative study. Mol BioSyst 7(3):630–639

    Article  CAS  PubMed  Google Scholar 

  37. Liem LM, Fibbe WE, van Houwelingen HC, Goulmy E (1999) Serum transforming growth factor-beta1 levels in bone marrow transplant recipients correlate with blood cell counts and chronic graft-versus-host disease. Transplantation 67(1):59–65

    Article  CAS  PubMed  Google Scholar 

  38. Di Raimondo F, Azzaro MP, Palumbo GA et al (2001) Elevated vascular endothelial growth factor (VEGF) serum levels in idiopathic myelofibrosis. Leukemia 15(6):976–980

    Article  PubMed  Google Scholar 

  39. Enjoji M, Nakamuta M, Yamaguchi K et al (2005) Clinical significance of serum levels of vascular endothelial growth factor and its receptor in biliary disease and carcinoma. World J Gastroenterol 11(8):1167–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the cystic fibrosis patients and healthy subjects who volunteered for this study. This work was supported by Grant K08 HL035454 from the United States National Institutes of Health, National Heart Lung, and Blood Institute (JM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Maloney.

Ethics declarations

Conflict of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maloney, J.P., Narasimhan, J. & Biller, J. Decreased TGF-β1 and VEGF Release in Cystic Fibrosis Platelets: Further Evidence for Platelet Defects in Cystic Fibrosis. Lung 194, 791–798 (2016). https://doi.org/10.1007/s00408-016-9925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9925-9

Keywords

Navigation