Skip to main content
Log in

Activation of Cold-Sensitive Channels TRPM8 and TRPA1 Inhibits the Proliferative Airway Smooth Muscle Cell Phenotype

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Airway smooth muscle cell (ASMC) phenotypic modulation is one of the key factors contributing to asthma. Temperature changes may induce asthma, and these changes are known to be related to the temperature-sensitive transient receptor potential channels (TS-TRPs). The present study was designed to investigate the cellular functions of cold-sensitive channels, TRPM8 and TRPA1, in the phenotypic modulation of ASMCs.

Methods

A rat asthma model was constructed and the expression of TS-TRPs in ASM was tested. Using the agonists and antagonists for both TRPM8 and TRPA1, the effects of cold-sensitive channels on the phenotypic modulation of ASMCs were evaluated by measurement of contractile protein expression and cell proliferation and migration. Signaling pathways and matrix metalloproteinase-2 (MMP-2) activity were assayed with Western blotting and gelatin zymography.

Results

TRPM8 and TRPA1 were decreased in the ASM of the rat asthma model. Icilin and menthol, agonists for TRPM8 and TRPA1, inhibited ASMC proliferation and migration induced by fetal bovine serum (FBS) or platelet-derived growth factor (PDGF). Moreover, icilin reversed the FBS-induced inhibition of the expression of contractile phenotype markers, smooth muscle α-actin, and SM22α. Icilin also antagonized the activation of p38 and MMP-2 and the repression of p21 caused by FBS.

Conclusions

Our findings show, for the first time, that the activation of TRPM8 and TRPA1 inhibits ASMC proliferative phenotype. These data suggest that TRPM8 and TRPA1 agonists may be promising new therapies for asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sumi Y, Hamid Q (2007) Airway remodeling in asthma. Allergol Int 56:341–348

    Article  CAS  PubMed  Google Scholar 

  2. Prakash YS (2013) Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 305:L912–L933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pera T, Sami R, Zaagsma J et al (2011) TAK1 plays a major role in growth factor-induced phenotypic modulation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 301:L822–L828

    Article  CAS  PubMed  Google Scholar 

  4. Camoretti-Mercado B, Liu HW, Halayko AJ et al (2000) Physiological control of smooth muscle-specific gene expression through regulated nuclear translocation of serum response factor. J Biol Chem 275:30387–30393

    Article  CAS  PubMed  Google Scholar 

  5. Dekkers BG, Naeimi S, Bos IS et al (2015) L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-beta1. Am J Physiol Lung Cell Mol Physiol 308:L301–L306

    Article  CAS  PubMed  Google Scholar 

  6. Gerthoffer WT (2008) Migration of airway smooth muscle cells. Proc Am Thorac Soc 5:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gosens R, Schaafsma D, Meurs H et al (2004) Role of Rho-kinase in maintaining airway smooth muscle contractile phenotype. Eur J Pharmacol 483:71–78

    Article  CAS  PubMed  Google Scholar 

  8. Gosens R, Nelemans SA, Grootte Bromhaar MM et al (2003) Muscarinic M3-receptors mediate cholinergic synergism of mitogenesis in airway smooth muscle. Am J Respir Cell Mol Biol 28:257–262

    Article  CAS  PubMed  Google Scholar 

  9. Dekkers BG, Schaafsma D, Nelemans SA et al (2007) Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function. Am J Physiol Lung Cell Mol Physiol 292:L1405–L1413

    Article  CAS  PubMed  Google Scholar 

  10. Pera T, Gosens R, Lesterhuis AH et al (2010) Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype. Respir Res 11:48

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saxena T, Maheshwari S, Saxen M (2011) Mild cool air-a risk factor for asthma exacerbations: results of a retrospective study. J Assoc Physicians India 59:624–628

    PubMed  Google Scholar 

  12. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  CAS  PubMed  Google Scholar 

  13. Yang XR, Lin MJ, McIntosh LS et al (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267–L1276

    Article  CAS  PubMed  Google Scholar 

  14. Aarts M, Iihara K, Wei WL et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  CAS  PubMed  Google Scholar 

  15. Peier AM, Moqrich A, Hergarden AC et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  16. Xing H, Ling JX, Chen M et al (2008) TRPM8 mechanism of autonomic nerve response to cold in respiratory airway. Mol Pain 4:22

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grace MS, Baxter M, Dubuis E et al (2014) Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 171:2593–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gentry C, Stoakley N, Andersson DA et al (2010) The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol Pain 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tsumura M, Sobhan U, Sato M et al (2013) Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts. PLoS One 8:e82233

    Article  PubMed  PubMed Central  Google Scholar 

  20. He M, Zhang L, Shao Y et al (2010) Angiotensin II type 2 receptor mediated angiotensin II and high glucose induced decrease in renal prorenin/renin receptor expression. Mol Cell Endocrinol 315:188–194

    Article  CAS  PubMed  Google Scholar 

  21. He M, Zhang L, Shao Y et al (2009) Inhibition of renin/prorenin receptor attenuated mesangial cell proliferation and reduced associated fibrotic factor release. Eur J Pharmacol 606:155–161

    Article  CAS  PubMed  Google Scholar 

  22. Xing H, Chen M, Ling J et al (2007) TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 27:13680–13690

    Article  CAS  PubMed  Google Scholar 

  23. Perry MM, Baker JE, Gibeon DS et al (2014) Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol 50:7–17

    PubMed  PubMed Central  Google Scholar 

  24. Vogel ER, VanOosten SK, Holman MA et al (2014) Cigarette smoke enhances proliferation and extracellular matrix deposition by human fetal airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 307:L978–L986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gueders MM, Foidart JM, Noel A et al (2006) Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol 533:133–144

    Article  CAS  PubMed  Google Scholar 

  26. Bharate SS, Bharate SB et al (2012) Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 3:248–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ong HL, Chen J, Chataway T et al (2002) Specific detection of the endogenous transient receptor potential (TRP)-1 protein in liver and airway smooth muscle cells using immunoprecipitation and Western-blot analysis. Biochem J 364:641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zholos AV (2015) TRP channels in respiratory pathophysiology: the role of oxidative, chemical irritant and temperature stimuli. Curr Neuropharmacol 13:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li S, Westwick J, Poll C (2003) Transient receptor potential (TRP) channels as potential drug targets in respiratory disease. Cell Calcium 33:551–558

    Article  CAS  PubMed  Google Scholar 

  30. Gosling M, Poll C, Li S (2005) TRP channels in airway smooth muscle as therapeutic targets. Naunyn Schmiedebergs Arch Pharmacol 371:277–284

    Article  CAS  PubMed  Google Scholar 

  31. Sadofsky LR, Sreekrishna KT, Lin Y et al (2014) Unique responses are observed in transient receptor potential Ankyrin 1 and Vanilloid 1 (TRPA1 and TRPV1) co-expressing cells. Cells 3:616–626

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kamakura T, Ishida Y, Nakamura Y et al (2013) Functional expression of TRPV1 and TRPA1 in rat vestibular ganglia. Neurosci Lett 552:92–97

    Article  CAS  PubMed  Google Scholar 

  33. Nassini R, Pedretti P, Moretto N et al (2012) Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One 7:e42454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu J, Zhu YT, Wang GZ et al (2015) The PPARgamma agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma. Acta Pharmacol Sin 36:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Weifang Rong for his excellent advice. We would also like to thank Dr. Hanyi Zhuang of Shanghai Jiao Tong University School of Medicine, Yufei Liu of Stanford University, for the grammatical revision of this manuscript. This work was supported by Grants from the National Natural Science Foundation of China (30800380, 81170505, and 81470841). Additionally, this work was sponsored by Shanghai Pujiang Program by Science and Technology Commission of Shanghai Municipality (16PJ1405400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He.

Ethics declarations

Conflicts of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., An, X., Wang, Q. et al. Activation of Cold-Sensitive Channels TRPM8 and TRPA1 Inhibits the Proliferative Airway Smooth Muscle Cell Phenotype. Lung 194, 595–603 (2016). https://doi.org/10.1007/s00408-016-9901-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9901-4

Keywords

Navigation