Skip to main content
Log in

Masters, questions and challenges in the abacus schools

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

The mathematical scenario in Italy during the Late Middle Ages and the Renaissance is mainly dominated by the treatises on the abacus, which developed together with the abacus schools. In that context, between approximately the last thirty years of the fourteenth century and the first twenty years of the sixteenth century, the manuscript and printed tradition tell us of queries and challenges, barely known or totally unknown, in which the protagonists were abacus masters. We report in this work on the most significant examples and draw out interesting cues for thoughts and remarks of a scientific, historical and biographical nature. Five treatises, written in the fifteenth and sixteenth century, have been the main source of inspiration for this article: the Trattato di praticha d’arismetricha and the Tractato di praticha di geometria included in the codices Palat. 573 and Palat. 577 (c. 1460) kept in the Biblioteca Nazionale of Florence and written by an anonymous Florentine disciple of the abacist Domenico di Agostino Vaiaio; another Trattato di praticha d’arismetrica written by Benedetto di Antonio da Firenze in 1463 and included in the codex L.IV.21 kept in the Biblioteca Comunale of Siena; the Tractatus mathematicus ad discipulos perusinos written by Luca Pacioli between 1477 and 1480, manuscript Vat. Lat. 3129 of the Biblioteca Apostolica Vaticana; and Francesco Galigai’s Summa de arithmetica, published in Florence in 1521.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See for instance Bortolotti 1927, 169–170; Arrighi 1970, 2004, 225–236; Galuzzi et al. 2012, 36–40, 44–68.

  2. From the vast bibliography on the subject cf. Bortolotti 1927, 171–180; Masotti 1962; Gabrieli 1986; Toscano 2009.

  3. On abacus schools and abacus mathematics, cf. Franci 1998; Ulivi 2002a, b, 2008.

  4. Transcribed and published by Calzoni and Cavazzoni: cf. Pacioli 1996.

  5. Arrighi 1965, 397–398; Arrighi 2004, 156–157.

  6. “Maestro Giovanni di Bartolo began teaching around 1390. He was young, just like his teacher Antonio when he died. After his teacher’s demise, although he was only 19, some of his and Antonio’s friends helped him and convinced him to open the same school. Since he was young, although he was erudite and owned many books, he was little known to the other teachers who, moved by the envy that reigns among those who perform the same activity, and most of all among those who are teaching at present, after discussing among themselves in which way they could discourage him from his intent, decided to proceed as follows. So, believing that, due to his age, Giovanni was not expert enough, each of them selected the best students from his school: about 25 from Maestro Michele’s school, expert in various subjects, and almost as many from the school where Maestro Luca taught, although very little, and most of all his teacher, Maestro Biagio, taught. They said to each of them: it came to our knowledge that a young disciple of Maestro Antonio’s has reopened the school that he had when he was alive, and since we think that among you there is someone better than him, today you shall go follow his lessons, showing him your ability, so that he will decide to do something else. Obedient to such orders, those disciples went to the school of Maestro Giovanni who was surprised but immediately understood the reason for so many students. However, calling them one by one, he explained to all of them the subject they requested, and he did it so well that in that short time they felt they had learned much more than they had so far from the other teachers; and many of them ended up by bad-mouthing their first teachers, since they understood the deep envy they felt for him”.

  7. For more detailed information on the aforesaid schools and masters, see Ulivi 2004a, 2013.

  8. Arrighi 1967a, 401–402; Arrighi 2004, 165–166.

  9. “I understand that to you it seems a great fact that cubi, censi and cose can be equalised to the number, since in the past everybody thought it impossible; I am telling you that every equalisation can be defined and, if the procedure wasn’t very long and difficult, I would explain it to you in this letter; however, I am sending you what you have requested”.

  10. In the fourteenth century, four treatises were known reporting formulas for the solution of third-degree equations that were completely wrong: Paolo Gherardi’s Libro di ragioni, written in Montpellier (1328: BNF, Magl. XI, 87), the anonymous Trattato dell’alcibra amuchabile (c. 1365: BRF, Ricc. 2263), the treatise Aritmetica e geometria by Gilio da Siena (1384: BCS, L.IX.28), the anonymous Libro merchatantesche (1398: BCP, 2QqE13). The Aliabraa argibra, written in Pisa by some Maestro Dardi in 1344, found in different codices, and the aforementioned Libro merchatantesche propose formulas for complete third- and fourth-degree equations that are exact, but only within specific problems. The same formulas can be found in many texts of the fifteenth century. On this subject, see Franci 2013.

  11. “The cube root of 84, decreased by 5 cose, is 4; because 5 cose are 20 that, subtracted from 84, gives 64, whose cubic root is 4”.

  12. Arrighi 1967c, 774; Arrighi 2004, 208.

  13. “Ten problems to Giovanni de’ Bicci de’ Medici that said Giovanni sent to him in the past to pass them on to some expert mathematicians, who at that time had schools in this city”.

  14. “No less Lionardo Pisano clearly demonstrates that square numbers have certain properties, by which one can immediately find the solutions to the questions asked on them”.

  15. “Find a square number such that, whether you add or subtract a number, remains a square number”.

  16. See Franci 1984.

  17. Cf. Ermini 1971, 185; Ulivi 2002b, 125–126.

  18. Two more questions included in Palat. 573 and in L.IV.21 concern abacus masters from out of Florence and their relations with Florentine abacus schools. The two problems, both solved algebraically, have no particular mathematical significance; therefore, we will provide only some notes of a historical nature. The manuscript Palatino’s problem was posed by Filippo de’ Folli da Pisa to Maestro Giovanni di Bartolo in 1399 (Arrighi 1967a, 404; Arrighi 2004, 166–167). This problem is the only problem we know by Maestro Filippo. The Folli, from an illustrious family from Pisa, taught at least in 1398–1399, cooperating with his junior Iacopo di Maestro Tommaso, one of the five abacists active in Pisa in the fourteenth century who belonged to the lineage of the Bonagi dell’Abaco, perhaps the same of Fibonacci’s (Ulivi 2011, 258–271). The question of the manuscript L.IV.21 was sent to Florence by a master from L’Aquila in 1445, even if it is included by Benedetto da Firenze in the “chasi exenplari alla regola dell’algebra di Maestro Biagio”; said Biagio, called “il vecchio”, had died around 1340, after being master and collaborator of the renowned Paolo dell’Abaco, probably in the “Bottega di Santa Trinita” (Arrighi 1965, 377; Arrighi 2004, 136; M\(^{\circ }\) Biagio 1983, 116–119). As of today, the problem of the anonymous master from L’Aquila is the only statement that provides evidence of the existence of abacus schools in the capital city of Abruzzo, at least in the mid-fifteenth century.

  19. Bertanza and Dalla Santa 1907; Ulivi 2002b, 131–132; Ulivi 2008, 407.

  20. BNF, Palat. 573, cc. 138r-138v; Arrighi 1967a, 400 and 421; Arrighi 2004, 165 and 181.

  21. “Astrologists believe that the Earth has a circumference of 20400. Where two men start from the same point, and one goes east, while the other goes west. And on the first day, one travels one mile, the second day 2 miles, and the third day 3 miles, and so every day the first man has travelled one mile more than the previous day. And the second man travels one mile on the first day, 8 miles on the second, and so every day he travels the next cube number, that is 27 miles on the third day and 64 miles on the fourth. The question is: in how many days will they meet? Marco Trevigiano sent this question to Florence in 1372. And, although there are various methods, I follow this one ...”.

  22. See, for example, Loria 1982, 280; Gavagna 1999, 302–304; Gavagna 2007, 126–128; Giusti 2007, 172–173.

  23. Summa, I: distinctio secunda, tractatus quintus, 38r and 44r.

  24. “Do as I say; assume that they meet in a number of days equal to 1co.; hence, in such time, the first would have travelled \(\frac{1}{2}ce\). and \(\frac{1}{2}co\). And in that time, the second would have travelled \(\frac{1}{4}ce.ce.\) and \(\frac{1}{2} cu.\) and \(\frac{1}{4}ce.\) ...”.

  25. On the symbolism used by Pacioli, see also the next question.

  26. The German mathematician Michael Stifel, in his Arithmetica integra of 1544 (306r-307v), re-examining the problem from Cardano’s work, solved it algebraically, like Pacioli and Tartaglia, but with 44310 instead of 20400 so as to obtain the solution \(x = 20\). Soon after, observing that \({P}_2 (x)\) is the square of \({P}_1 ( x )\), without developing the two expressions, solved the \({P}_1 (x)+{P}_2 (x)=44310\) by changing the variable \(( {x^{2}+x} )/2=y\), thus avoiding the fourth-degree equation and finding x through two second-degree equations.

  27. Calvesi 1992, 18–19; Calvesi 2000, 40.

  28. Cf. Berra 2005, 125–133, 342. Oddly, it is precisely Berra, in producing these documents and only three more notary deeds where some Gabriele Aratori is mentioned, who believes “invece evidente” that the Gabriele mentioned by Cardano “non fosse in alcun modo parente del nonno materno del Caravaggio perché il suo nome non compare mai, neppure marginalmente, associato a quello dei familiari del pittore”.

  29. The first, gone missing, dates back to 1470 and was dedicated to the children of the merchant Antonio Rompiasi, of whom Luca was the tutor during his first stay in Venice.

  30. BAV, Vat. Lat. 3129, 359v-360r; Cavazzoni 1998, 594–595; Derenzini 1998, 187, 189. Note that the passage is crossed out with a stroke of the pen.

  31. “Find 3 proportional numbers so that the square of the third is equal to the sum of the squares of the other two, and if you multiply the first number by the second the result is 10; I am asking what the value of each number is. Mind you, this is a good question sent to me on the 4th April 1480 from Florence by Maestro Giovanni Sodi at the hand of Giovan Giacomo, goldsmith in Perugia, and we gave him a very exact answer, and to other questions too, and then we sent him, in our turn, other questions that so far have not been answered, etc.”.

  32. Leonardo Pisano 1857, 1862, I, 447–448.

  33. Actually, in the manuscript, the author proceeds in a rather erratic way, placing them as exponents or above the relevant coefficient.

  34. Summa, I: distinctio sexta, tractatus sextus, 93r.

  35. Piero della Francesca 2012, I, Testo e note, XIX, L-LI. We notice that in the vernacular version of Piero della Francesca’s Libellus quinque corporum regularium, which is part of the Divina proportione, published in 1509, Pacioli again used a symbolic notation limited to the first, second and fourth power, but different from both that of the Tractatus and that used by Piero in the original text: cf. Piero della Francesca 1995, I, Testo e note, XXXII and XXXIV. At the end of the second part of the Summa, in the “Particularis tractatus circa corpora regularia et ordinaria”, although taken from the geometrical part of Piero’s Trattato d’abaco, Luca obviously follows the symbolism that is used in his entire text.

  36. The “Capitoli d’arcibra” occupy the folios 124r-127r of the manuscript and are preceded by a treatise by Matteo di Niccolò Cerretani, written with a different handwriting: cf. Van Egmond 1980, 78.

  37. BMLF, Ash. 353, 124v.

  38. On Raffaello Canacci, Giovanni dei Sodi and Francesco Galigai cf. Ulivi 2004b, 125–134, 162–166; Ulivi 2012.

  39. Summa de arithmetica, 71r-71v. Cf. Franci and Toti Rigatelli 1985, 68.

  40. Summa, I: distinctio sexta, tractatus sextus, 86v-89v.

  41. Summa de arithmetica, 22r, 25r-27r.

  42. “When you wish to divide 11 in three continued proportional parts, find each part. This is the question that Maestro Agnolo dal Carmine posed to me, without telling me in which proportion he wanted it; I solved it in the double proportion”.

  43. Leonardo Pisano 1857, 1862, I, 181; Giusti 2002, 91.

  44. Cf. Pacioli 1996, 384–385 and 393. On the problems of chapter “Divisioni e partimenti di numeri” cf. Heeffer 2010.

  45. “Divide 14 in three continuously proportional parts so that, by multiplying each of them by the sum of the other two, the summed up products give 112; I am asking said quantities”. In the second formulation the numbers 14 and 112 are replaced by 20 and 160 respectively.

  46. Mazzinghi 1967, 15–16; Franci 1988, 245.

  47. Summa, I, 89v and 91r.

  48. BNF, Palat. 573, 477r-477v; Arrighi 1967b, 22–23.

  49. “Find 4 continuously proportional quantities so that the sum of the first and fourth is 18, and the sum of the second and third is 12; I am asking how much will each be”.

  50. Calandri 1982, 32–33; Høyrup 2007, 116–118, 327–328.

  51. Summa, I, 87v; Franci 1990, 25; Høyrup 2007, 117–119.

  52. Summa, I, 96v.

  53. BNF, Magl. XI.120, 5v-6r.

  54. Cf. for instance Richa 1989, 10, 92; BNF, Magl. XXV.398, 95.

  55. His name does not appear in the Baptismal Records of the Opera di Santa Maria del Fiore in Florence.

  56. On Angelo Catastini and his family cf. Negri 1973, 42; Neri di Bicci 1976, ad vocem; Giovannini and Vitolo 1981, 88, 96–98; Verde 1973–2010, 6, ad vocem. ASF, Catasto 66 (year 1427), 179v; Catasto 652 (year 1447), 19r-19v; Catasto 793 (year 1458), 297r-298r.

  57. ASF, Corporazioni religiose soppresse dal governo francese 113, 20, 152r-152v.

  58. Ulivi 2002a, 196–198.

Abbreviations

ASF:

Archivio di Stato, Firenze

BAV:

Biblioteca Apostolica Vaticana

BCP:

Biblioteca Comunale, Palermo

BCS:

Biblioteca Comunale, Siena

BMLF:

Biblioteca Medicea Laurenziana, Firenze

BNF:

Biblioteca Nazionale, Firenze

BRF:

Biblioteca Riccardiana, Firenze

References

  • Arrighi, Gino. 1965. Il codice L. IV. 21 della Biblioteca degl’Intronati di Siena e la “Bottega dell’abaco a Santa Trinita” in Firenze. Physis 7: 369–400.

    Google Scholar 

  • Arrighi, G. 1967a. Nuovi contributi per la storia della matematica in Firenze nell’età di mezzo. Il codice Palatino 573 della Biblioteca Nazionale di Firenze. Istituto Lombardo. Accademia di Scienze e Lettere, Rendiconti. Classe di Scienze (A) 101: 395–437.

    MATH  Google Scholar 

  • Arrighi, G. 1967b. Una trascelta delle “miracholose ragioni” di \(\text{ M }^{\circ }\) Giovanni di Bartolo (secc. XIV–XV). Dal Codice Palatino 573 della Biblioteca Nazionale di Firenze. Periodico di Matematiche 45: 11–24.

    MATH  Google Scholar 

  • Arrighi, G. 1967c. Il trattato di geometria e la volgarizzazione del “Liber quadratorum” di Leonardo Pisano del codice Palatino 577 (sec. XV) della Biblioteca Nazionale di Firenze. Atti della Fondazione Giorgio Ronchi 22: 760–775.

    MathSciNet  Google Scholar 

  • Arrighi, G. 1970. La fortuna di Leonardo pisano alla corte di Federico II, in Dante e la cultura sveva. Atti del convegno di studi tenuto a Melfi, 2–5 novembre 1969. Firenze, Olschki: 17–31.

  • Arrighi, G. 2004. La Matematica dell’età di mezzo. Scritti scelti, a cura di Francesco Barbieri, Raffaella Franci, Laura Toti Rigatelli. Pisa, Edizioni ETS.

  • Berra, Giacomo. 2005. Il giovane Caravaggio in Lombardia. Ricerche documentarie sui Merisi, gli Aratori e i Marchesi di Caravaggio. Firenze, Fondazione di studi di Storia dell’Arte Roberto Longhi.

  • Bertanza, Enrico, and Giuseppe Dalla Santa. 1907. Documenti per la storia della cultura in Venezia, I: Maestri, scuole e scolari in Venezia fino al 1500. Venezia, Tip: Emiliana.

    Google Scholar 

  • Bortolotti, Ettore. 1927. Le matematiche disfide, e la importanza che esse ebbero nella Storia delle Scienze. Atti della Società Italiana per il progresso delle Scienze 15: 163–180.

    Google Scholar 

  • Calandri, Filippo. 1982. Una raccolta di ragioni, dal codice L.VI.45 della Biblioteca Comunale di Siena, a cura e con introduzione di Daniela Santini. Quaderni del Centro Studi della Matematica Medioevale 4. Siena, Servizio editoriale dell’Università.

  • Calvesi, Maurizio. 1992. La nobiltà di Caravaggio. Art e Dossier 68: 18–19.

    Google Scholar 

  • Calvesi, M. 2000. Considerazioni sulla nascita, la famiglia, la formazione di Caravaggio, in Caravaggio. La luce nella pittura lombarda, Bergamo, Accademia Carrara 12 aprile–2 luglio 2000. Milano, Electa: 38–44.

  • Cavazzoni, Gianfranco. 1998. Il Tractatus mathematicus ad discipulos perusinos, in Luca Pacioli e la matematica del Rinascimento. Atti del convegno internazionale di studi, Sansepolcro 13–16 aprile, 1994, a cura di Enrico Giusti. Città di Castello, Petruzzi: 199–208

  • Derenzini, Giovanna, 1998. Il codice Vaticano Latino 3129 di Luca Pacioli, in Luca Pacioli e la matematica del Rinascimento. Atti del convegno internazionale di studi, Sansepolcro 13–16 aprile, 1994, a cura di Enrico Giusti. Città di Castello, Petruzzi: 169–198.

  • Ermini, Giuseppe. 1971. Storia dell’Università di Perugia. Olschki: Firenze.

  • Franci, Raffaella. 1984. Numeri congruo-congruenti in codici dei secoli XIV e XV. Bollettino di Storia delle Scienze Matematiche 4(1): 3–23.

    MATH  MathSciNet  Google Scholar 

  • Franci, R. 1988. Antonio de’ Mazzinghi: An Algebraist of 14th Century. Historia Mathematica 15: 240–249.

    Article  MATH  MathSciNet  Google Scholar 

  • Franci, R. 1990. La teoria delle proporzioni nella matematica dell’abaco da Leonardo Pisano a Luca Pacioli. Bollettino di Storia delle Scienze Matematiche 10(1): 3–28.

    MATH  MathSciNet  Google Scholar 

  • Franci, R. 1998. La trattatistica d’abaco nel Quattrocento, in Luca Pacioli e la matematica del Rinascimento. Atti del convegno internazionale di studi, Sansepolcro 13–16 aprile, 1994, a cura di Enrico Giusti, Città di Castello, Petruzzi: 61–75.

  • Franci, R. 2013. Agibra mochabile: un’algebra della fine del Trecento (Ms. 2QqE13 della Biblioteca Comunale di Palermo). Bollettino di Storia delle Scienze Matematiche 33(2): 193–233.

  • Franci, R., and Laura Toti Rigatelli. 1985. Towards a history of algebra from Leonardo of Pisa to Luca Pacioli. Janus 72: 17–82.

    MATH  MathSciNet  Google Scholar 

  • Gabrieli, Giovanni Battista. 1986. Nicolò Tartaglia. Invenzioni, disfide e sfortune. Centro Studi della Matematica Medioevale: Bibliografie e Saggi, Siena, Università degli Studi, 2.

  • Galuzzi, Massimo, Maierù Luigi, and Santoro Nadia. 2012. La tradizione latina dell’algebra: Fibonacci, le scuole d’abaco, il Cinquecento. Roma, Aracne.

  • Gavagna, V. 1999. Alcune osservazioni sulla Practica Arithmetice di Cardano e la tradizione abachistica quattrocentesca, in Girolamo Cardano. Le opere, le fonti, la vita, a cura di Marialuisa Baldi e Guido Canziani. Milano, Franco Angeli: 273–312.

  • Gavagna, V. 2007. L’insegnamento dell’aritmetica nel General trattato di Niccolò Tartaglia, in Atti della giornata di studio in memoria di Niccolò Tartaglia. Supplemento ai Commentari dell’Ateneo di Brescia: 101–138.

  • Giovannini, Prisca and Sergio Vitolo. 1981. Il Convento del Carmine di Firenze: caratteri e documenti. Firenze, Salone Vanni, Convento del Carmine, 23 settembre-10 ottobre 1981. Firenze, Tip. nazionale.

  • Giusti, Enrico. 2002. Matematica e commercio nel Liber abaci, in Un ponte sul Mediterraneo. Leonardo Pisano, la scienza araba e la rinascita della matematica in Occidente, a cura di E. Giusti e con la collaborazione di Raffaella Petti. Firenze, Edizioni Polistampa: 59–120.

  • Giusti, E. 2007. L’insegnamento dell’algebra nel General trattato di N. Tartaglia, in Atti della giornata di studio in memoria di Niccolò Tartaglia. Supplemento ai Commentari dell’Ateneo di Brescia: 155–179.

  • Heeffer, Albrecht. 2010. Algebraic partitioning problems from Luca Pacioli’s Perugia manuscript (Vat. Lat. 3129). Sources and Commentaries in Exact Science 11: 3–51.

    MATH  MathSciNet  Google Scholar 

  • Høyrup, Jeans., 2007. Jacopo da Firenze’s“Tractatus Algorismi” and Early Italian Abbacus Culture. Basel-Boston-Berlin, Birkhäuser.

  • Leonardo Pisano. 1857, 1862. Scritti di Leonardo Pisano matematico del secolo decimo terzo. Vol. I, Il Liber abbaci secondo la lezione del Codice Magliabechiano C.I.2616, Badia Fiorentina, n. 73, Roma, Tipografia delle Scienze Matematiche e Fisiche. Vol. II, La Practica geometriae secondo la lezione del Codice Urbinate n. 292 della Biblioteca Vaticana; Opuscoli secondo un Codice della Biblioteca Ambrosiana di Milano contrassegnato E. 75, Parte superiore. Roma, Tipografia delle Scienze Matematiche e Fisiche.

  • Loria, Gino. 1982. Storia delle matematiche dall’alba della civiltà al tramonto del secolo 19. Milano, Hoepli (anast. repr. ed. 1950).

  • \(\text{ M }^{\circ }\) Biagio. 1983. Chasi exenplari alla regola dell’algibra. Nella trascelta a cura di \(M^{\circ }\) Benedetto, dal Codice L.IV.21 della Biblioteca Comunale di Siena, a cura e con introduzione di Licia Pieraccini. Quaderni del Centro Studi della Matematica Medioevale 5, Siena, Servizio editoriale dell’Università.

  • Masotti, Arnaldo, 1962. Niccolò Tartaglia e i suoi Quesiti. Atti del Convegno: quarto centenario della morte di Niccolò Tartaglia, 30–31 maggio, 1959, a cura di A. Masotti. Brescia, La Nuova Cartografica: 17–55.

  • Mazzinghi, Antonio 1967, “Trattato di fioretti”, nella trascelta a cura di \({M}^{\circ }\) Benedetto, secondo la lezione del codice L.IV.21, sec. 15, della Biblioteca degl’Intronati di Siena, a cura e con introduzione di Gino Arrighi. Pisa, Domus Galiaeana.

  • Negri, Giulio. 1973. Istoria degli scrittori fiorentini la quale abbraccia intorno a due mila autori, che negli ultimi cinque secoli hanno illustrata coi loro scritti quella nazione, in qualunque materia ed in qualunque lingua, e disciplina. Bologna, A. Forni (anast. repr. ed. Ferrara, Bernardino Pomatelli, 1722).

  • Neri di Bicci. 1976. Le ricordanze (10 marzo 1453–24 aprile 1475), a cura di Bruno Santi. Pisa, Marlin.

  • Pacioli, Luca. 1996. Tractatus mathematicus ad discipulos perusinos, a cura di Giuseppe Calzoni, Gianfranco Cavazzoni. Città di Castello, Delta Grafica.

  • Piero della Francesca. 1995. Libellus de quinque corporibus regularibus. Firenze, Giunti (with the facsimile copy of the manuscript Urb. Lat. 632 of the Biblioteca Apostolica Vaticana).

  • Piero della Francesca. 2012. Trattato d’abaco. Roma, Istituto poligrafico e Zecca dello Stato, Libreria dello Stato (with the facsimile copy of the manuscript Ash. 359* of the Biblioteca Medicea Laurenziana of Florence).

  • Richa, Giuseppe. 1989. Notizie istoriche delle chiese fiorentine divise ne’ suoi quartieri. Roma, Multigrafica (anast. repr. ed. Firenze, Viviani, 1754–1762).

  • Toscano, Fabio. 2009. La formula segreta. Tartaglia, Cardano e il duello matematico che infiammò l’Italia del Rinascimento. Milano, Sironi.

  • Ulivi, Elisabetta. 2002a. Benedetto da Firenze (1429–1479), un maestro d’abaco del XV secolo. Con documenti inediti e con un’Appendice su abacisti e scuole d’abaco a Firenze nei secoli XIII-XVI. Bollettino di Storia delle Scienze Matematiche 22(1): 3–243.

    MathSciNet  Google Scholar 

  • Ulivi, E. 2002b. Scuole e maestri d’abaco in Italia tra Medioevo e Rinascimento, in Un ponte sul Mediterraneo. Leonardo Pisano, la scienza araba e la rinascita della matematica in Occidente, a cura di Enrico Giusti e con la collaborazione di Raffaella Petti. Firenze, Edizioni Polistampa: 121–159.

  • Ulivi, E. 2004a. Maestri e scuole d’abaco a Firenze: la Bottega di Santa Trinita. Bollettino di Storia delle Scienze Matematiche 24(1): 43–91.

    MATH  MathSciNet  Google Scholar 

  • Ulivi, E. 2004b. Raffaello Canacci, Piermaria Bonini e gli abacisti della famiglia Grassini. Bollettino di Storia delle Scienze Matematiche 24(2): 123–211.

    MathSciNet  Google Scholar 

  • Ulivi, E. 2008. Scuole d’abaco e insegnamento della matematica, in Il Rinascimento Italiano e l’Europa. Volume quinto: Le scienze, Fondazione Cassamarca. Treviso, Angelo Colla Editore: 403–420.

  • Ulivi, E. 2011. Su Leonardo Fibonacci e sui maestri d’abaco pisani dei secoli XIII–XV. Bollettino di Storia delle Scienze Matematiche 31(2): 247–286.

    MATH  MathSciNet  Google Scholar 

  • Ulivi, E. 2012. I Maestri Giovanni dei Sodi, Francesco Galigai e le loro scuole d’abaco. Bollettino di Storia delle Scienze Matematiche 32(2): 311–405.

    Google Scholar 

  • Ulivi, E. 2013. Gli abacisti fiorentini delle famiglie ‘del Maestro Luca’, Calandri e Micceri e le loro scuole d’abaco (secc. XIV–XVI). Firenze, Olschki.

  • Van Egmond, Warren. 1980. Practical Mathematics in the Italian Renaissance. A catalog of Italian abbacus manuscripts and printed books to 1600. Supplemento agli Annali dell’Istituto e Museo di Storia della Scienza di Firenze 1.

  • Verde, Armando. 1973–2010. Lo Studio fiorentino, 1473–1503: ricerche e documenti. Firenze-Pistoia, Istituto nazionale di studi sul Rinascimento, presso Memorie domenicane, Leo S. Olschki, 6 voll.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Ulivi.

Additional information

Communicated by: Menso Folkerts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulivi, E. Masters, questions and challenges in the abacus schools. Arch. Hist. Exact Sci. 69, 651–670 (2015). https://doi.org/10.1007/s00407-015-0160-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-015-0160-1

Keywords

Navigation