Skip to main content
Log in

Neuroplasticity and second messenger pathways in antidepressant efficacy: pharmacogenetic results from a prospective trial investigating treatment resistance

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Genes belonging to neuroplasticity, monoamine, circadian rhythm, and transcription factor pathways were investigated as modulators of antidepressant efficacy. The present study aimed (1) to replicate previous findings in an independent sample with treatment-resistant depression (TRD), and (2) to perform a pathway analysis to investigate the possible molecular mechanisms involved. 220 patients with major depressive disorder who were non-responders to a previous antidepressant were treated with venlafaxine for 4–6 weeks and in case of non-response with escitalopram for 4–6 weeks. Symptoms were assessed using the Montgomery Asberg Depression Rating Scale. The phenotypes were response and remission to venlafaxine, non-response (TRDA) and non-remission (TRDB) to neither venlafaxine nor escitalopram. 50 tag SNPs in 14 genes belonging to the pathways of interest were tested for association with phenotypes. Molecular pathways (KEGG database) that included one or more of the genes associated with the phenotypes were investigated also in the STAR*D sample. The associations between ZNF804A rs7603001 and response, CREB1 rs2254137 and remission were replicated, as well as CHL1 rs2133402 and lower risk of TRD. Other CHL1 SNPs were potential predictors of TRD (rs1516340, rs2272522, rs1516338, rs2133402). The MAPK1 rs6928 SNP was consistently associated with all the phenotypes. The protein processing in endoplasmic reticulum pathway (hsa04141) was the best pathway that may explain the mechanisms of MAPK1 involvement in antidepressant response. Signals in genes previously associated with antidepressant efficacy were confirmed for CREB1, ZNF804A and CHL1. These genes play pivotal roles in synaptic plasticity, neural activity and connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Trivedi MH, Rush AJ, Wisniewski SR et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163:28–40. doi:10.1176/appi.ajp.163.1.28

    Article  PubMed  Google Scholar 

  2. Souery D, Calati R, Papageorgiou K et al. (2014) What to expect from a third step in treatment resistant depression: A prospective open study on escitalopram. World J Biol Psychiatry: 1–11. doi:10.3109/15622975.2014.987814

  3. Ruhe HG, Huyser J, Swinkels JA et al (2006) Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: a systematic review. J Clin Psychiatry 67:1836–1855

    Article  CAS  PubMed  Google Scholar 

  4. Rush AJ, Trivedi MH, Wisniewski SR et al (2006) Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med 354:1231–1242. doi:10.1056/NEJMoa052963

    Article  CAS  PubMed  Google Scholar 

  5. Bschor T, Baethge C (2010) No evidence for switching the antidepressant: systematic review and meta-analysis of RCTs of a common therapeutic strategy. Acta Psychiatr Scand 121:174–179. doi:10.1111/j.1600-0447.2009.01458.x

    Article  CAS  PubMed  Google Scholar 

  6. Souery D, Serretti A, Calati R et al (2011) Switching antidepressant class does not improve response or remission in treatment-resistant depression. J Clin Psychopharmacol 31:512–516. doi:10.1097/JCP.0b013e3182228619

    Article  CAS  PubMed  Google Scholar 

  7. Schosser A, Serretti A, Souery D et al (2012) European Group for the Study of Resistant Depression (GSRD)–where have we gone so far: review of clinical and genetic findings. Eur Neuropsychopharmacol 22:453–468. doi:10.1016/j.euroneuro.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  8. Fabbri C, Marsano A, Albani D et al (2014) PPP3CC gene: a putative modulator of antidepressant response through the B-cell receptor signaling pathway. Pharmacogenomics J 14:463–472. doi:10.1038/tpj.2014.15

    Article  CAS  PubMed  Google Scholar 

  9. Fabbri C, Crisafulli C, Gurwitz D et al (2015) Neuronal cell adhesion genes and antidepressant response in three independent samples. Pharmacogenomics J 15:538–548. doi:10.1038/tpj.2015.15

    Article  CAS  PubMed  Google Scholar 

  10. Calati R, Crisafulli C, Balestri M et al (2013) Evaluation of the role of MAPK1 and CREB1 polymorphisms on treatment resistance, response and remission in mood disorder patients. Prog Neuropsychopharmacol Biol Psychiatry 44:271–278. doi:10.1016/j.pnpbp.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  11. Zobel A, Maier W (2010) Pharmacogenetics of antidepressive treatment. Eur Arch Psychiatry Clin Neurosci 260:407–417. doi:10.1007/s00406-009-0091-4

    Article  PubMed  Google Scholar 

  12. Fabbri C, Serretti A (2015) Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep 17:50. doi:10.1007/s11920-015-0594-9

    Article  PubMed  Google Scholar 

  13. Fabbri C, Di Girolamo G, Serretti A (2013) Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 162B:487–520. doi:10.1002/ajmg.b.32184

    Article  PubMed  Google Scholar 

  14. Niitsu T, Fabbri C, Bentini F et al (2013) Pharmacogenetics in major depression: a comprehensive meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 45:183–194. doi:10.1016/j.pnpbp.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  15. Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26. doi:10.1038/nn1827

    Article  CAS  PubMed  Google Scholar 

  16. Morellini F, Lepsveridze E, Kahler B et al (2007) Reduced reactivity to novelty, impaired social behavior, and enhanced basal synaptic excitatory activity in perforant path projections to the dentate gyrus in young adult mice deficient in the neural cell adhesion molecule CHL1. Mol Cell Neurosci 34:121–136. doi:10.1016/j.mcn.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  17. Desarnaud F, Jakovcevski M, Morellini F et al (2008) Stress downregulates hippocampal expression of the adhesion molecules NCAM and CHL1 in mice by mechanisms independent of DNA methylation of their promoters. Cell Adhes Migr 2:38–44

    Article  Google Scholar 

  18. Morag A, Pasmanik-Chor M, Oron-Karni V et al (2011) Genome-wide expression profiling of human lymphoblastoid cell lines identifies CHL1 as a putative SSRI antidepressant response biomarker. Pharmacogenomics 12:171–184. doi:10.2217/pgs.10.185

    Article  CAS  PubMed  Google Scholar 

  19. Xia Z, Storm DR (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 6:267–276. doi:10.1038/nrn1647

    Article  CAS  PubMed  Google Scholar 

  20. McAuley EZ, Scimone A, Tiwari Y et al (2012) Identification of sialyltransferase 8B as a generalized susceptibility gene for psychotic and mood disorders on chromosome 15q25-26. PLoS One 7:e38172. doi:10.1371/journal.pone.0038172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347. doi:10.1146/annurev.pharmtox.011008.145634

    Article  CAS  PubMed  Google Scholar 

  22. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426

    Article  CAS  PubMed  Google Scholar 

  23. Maes M, Fisar Z, Medina M et al (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates–Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20:127–150. doi:10.1007/s10787-011-0111-7

    Article  CAS  PubMed  Google Scholar 

  24. Tsai SJ, Liou YJ, Hong CJ et al (2008) Glycogen synthase kinase-3beta gene is associated with antidepressant treatment response in Chinese major depressive disorder. Pharmacogenomics J 8:384–390. doi:10.1038/sj.tpj.6500486

    Article  CAS  PubMed  Google Scholar 

  25. Murakami M, Kambe T, Shimbara S et al (1999) Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 274:3103–3115

    Article  CAS  PubMed  Google Scholar 

  26. O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 13:45–82

    Article  PubMed  Google Scholar 

  27. Garcia MC, Kim HY (1997) Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res 768:43–48

    Article  CAS  PubMed  Google Scholar 

  28. Basselin M, Chang L, Bell JM et al (2006) Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 31:1659–1674. doi:10.1038/sj.npp.1300920

    Article  CAS  PubMed  Google Scholar 

  29. Rao JS, Ertley RN, Lee HJ et al (2006) Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 6:413–420. doi:10.1038/sj.tpj.6500391

    Article  CAS  PubMed  Google Scholar 

  30. Pae CU, Yu HS, Kim JJ et al (2004) BanI polymorphism of the cytosolic phospholipase A2 gene and mood disorders in the Korean population. NeuropsychoBiology 49:185–188. doi:10.1159/000077364

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Gibson TB, Robinson F et al (2001) MAP kinases. Chem Rev 101:2449–2476

    Article  CAS  PubMed  Google Scholar 

  32. Schafe GE, Atkins CM, Swank MW et al (2000) Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 20:8177–8187

    CAS  PubMed  Google Scholar 

  33. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    Article  CAS  PubMed  Google Scholar 

  34. Bogoyevitch MA, Court NW (2004) Counting on mitogen-activated protein kinases–ERKs 3, 4, 5, 6, 7 and 8. Cell Signal 16:1345–1354. doi:10.1016/j.cellsig.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  35. Qi H, Mailliet F, Spedding M et al (2009) Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation. Neuropharmacology 56:37–46. doi:10.1016/j.neuropharm.2008.06.068

    Article  CAS  PubMed  Google Scholar 

  36. Gourley SL, Wu FJ, Taylor JR (2008) Corticosterone regulates pERK1/2 map kinase in a chronic depression model. Ann N Y Acad Sci 1148:509–514. doi:10.1196/annals.1410.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qi X, Lin W, Li J et al (2008) Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress. Neurobiol Dis 31:278–285. doi:10.1016/j.nbd.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  38. Hisaoka K, Nishida A, Koda T et al (2001) Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 79:25–34

    Article  CAS  PubMed  Google Scholar 

  39. Lin TY, Yang TT, Lu CW et al (2011) Inhibition of glutamate release by bupropion in rat cerebral cortex nerve terminals. Prog Neuropsychopharmacol Biol Psychiatry 35:598–606. doi:10.1016/j.pnpbp.2010.12.029

    Article  CAS  PubMed  Google Scholar 

  40. Labasque M, Meffre J, Carrat G et al (2010) Constitutive activity of serotonin 2 C receptors at G protein-independent signaling: modulation by RNA editing and antidepressants. Mol Pharmacol 78:818–826. doi:10.1124/mol.110.066035

    Article  CAS  PubMed  Google Scholar 

  41. Malki K, Lourdusamy A, Binder E et al (2012) Antidepressant-dependent mRNA changes in mouse associated with hippocampal neurogenesis in a mouse model of depression. Pharmacogenet Genom 22:765–776. doi:10.1097/FPC.0b013e328356fa90

    Article  CAS  Google Scholar 

  42. Hardingham GE, Arnold FJ, Bading H (2001) A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat Neurosci 4:565–566. doi:10.1038/88380

    Article  CAS  PubMed  Google Scholar 

  43. Davis S, Vanhoutte P, Pages C et al (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20:4563–4572

    CAS  PubMed  Google Scholar 

  44. Ying SW, Futter M, Rosenblum K et al (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22:1532–1540

    CAS  PubMed  Google Scholar 

  45. Murphy GM Jr, Sarginson JE, Ryan HS et al (2013) BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenet Genom 23:301–313. doi:10.1097/FPC.0b013e328360b175

    Article  CAS  Google Scholar 

  46. Serretti A, Chiesa A, Calati R et al (2011) A preliminary investigation of the influence of CREB1 gene on treatment resistance in major depression. J Affect Disord 128:56–63. doi:10.1016/j.jad.2010.06.025

    Article  CAS  PubMed  Google Scholar 

  47. Esslinger C, Kirsch P, Haddad L et al (2011) Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 54:2514–2523. doi:10.1016/j.neuroimage.2010.10.012

    Article  PubMed  Google Scholar 

  48. Lencz T, Szeszko PR, DeRosse P et al (2010) A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacology 35:2284–2291. doi:10.1038/npp.2010.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lett TA, Zai CC, Tiwari AK et al (2011) ANK3, CACNA1C and ZNF804A gene variants in bipolar disorders and psychosis subphenotype. World J Biol Psychiatry 12:392–397. doi:10.3109/15622975.2011.564655

    Article  PubMed  Google Scholar 

  50. Williams HJ, Craddock N, Russo G et al (2011) Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Genet 20:387–391. doi:10.1093/hmg/ddq471

    Article  CAS  PubMed  Google Scholar 

  51. Shi J, Potash JB, Knowles JA et al (2011) Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatry 16:193–201. doi:10.1038/mp.2009.124

    Article  CAS  PubMed  Google Scholar 

  52. Shyn SI, Shi J, Kraft JB et al (2011) Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol Psychiatry 16:202–215. doi:10.1038/mp.2009.125

    Article  CAS  PubMed  Google Scholar 

  53. Zhou X, Qyang Y, Kelsoe JR et al (2007) Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav 6:269–276. doi:10.1111/j.1601-183X.2006.00256.x

    Article  PubMed  Google Scholar 

  54. Mao X, Yang SH, Simpkins JW et al (2007) Glutamate receptor activation evokes calpain-mediated degradation of Sp3 and Sp4, the prominent Sp-family transcription factors in neurons. J Neurochem 100:1300–1314. doi:10.1111/j.1471-4159.2006.04297.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(2):R271–R277. doi:10.1093/hmg/ddl207.

    Article  CAS  PubMed  Google Scholar 

  56. Terracciano A, Tanaka T, Sutin AR et al (2010) Genome-wide association scan of trait depression. Biol Psychiatry 68:811–817. doi:10.1016/j.biopsych.2010.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garriock HA, Kraft JB, Shyn SI et al (2010) A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry 67:133–138. doi:10.1016/j.biopsych.2009.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hughes AT, Guilding C, Piggins HD (2011) Neuropeptide signaling differentially affects phase maintenance and rhythm generation in SCN and extra-SCN circadian oscillators. PLoS One 6:e18926. doi:10.1371/journal.pone.0018926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Soria V, Martinez-Amoros E, Escaramis G et al (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35:1279–1289. doi:10.1038/npp.2009.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Howland RH (2008) Sequenced treatment alternatives to relieve depression (STAR*D). Part 1: study design. J Psychosoc Nurs Ment Health Serv 46:21–24

    Article  Google Scholar 

  61. Trivedi MH, Rush AJ, Ibrahim HM et al (2004) The inventory of depressive symptomatology, clinician rating (IDS-C) and self-report (IDS-SR), and the quick inventory of depressive symptomatology, clinician rating (QIDS-C) and self-report (QIDS-SR) in public sector patients with mood disorders: a psychometric evaluation. Psychol Med 34:73–82

    Article  CAS  PubMed  Google Scholar 

  62. Gaynes BN, Warden D, Trivedi MH et al (2009) What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr Serv 60:1439–1445. doi:10.1176/appi.ps.60.11.1439

    Article  PubMed  Google Scholar 

  63. Pintor L, Torres X, Navarro V et al (2004) Is the type of remission after a major depressive episode an important risk factor to relapses in a 4-year follow up? J Affect Disord 82:291–296. doi:10.1016/j.jad.2003.11.008

    Article  PubMed  Google Scholar 

  64. Faul F, Erdfelder E, Lang AG et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  65. Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  CAS  PubMed  Google Scholar 

  66. Bath KG, Jing DQ, Dincheva I et al (2012) BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology 37:1297–1304. doi:10.1038/npp.2011.318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lisachev PD, Pustyl’nyak VO, Shtark MB (2014) Expression of Bcl2 family genes in the early phase of long-term potentiation. Bull Exp Biol Med 158:77–79. doi:10.1007/s10517-014-2696-5

    Article  CAS  PubMed  Google Scholar 

  68. Liu ME, Huang CC, Yang AC et al (2013) Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes. PLoS One 8:e56663. doi:10.1371/journal.pone.0056663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tamasi V, Petschner P, Adori C et al (2014) Transcriptional evidence for the role of chronic venlafaxine treatment in neurotrophic signaling and neuroplasticity including also Glutamatergic [corrected]—and insulin-mediated neuronal processes. PLoS One 9:e113662. doi:10.1371/journal.pone.0113662

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shishkina GT, Kalinina TS, Berezova IV et al (2012) Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior. Neuropharmacology 62:177–183. doi:10.1016/j.neuropharm.2011.06.016

    Article  CAS  PubMed  Google Scholar 

  71. Kosten TA, Galloway MP, Duman RS et al (2008) Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacology 33:1545–1558. doi:10.1038/sj.npp.1301527

    Article  CAS  PubMed  Google Scholar 

  72. Boulle F, Massart R, Stragier E et al (2014) Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: normalization by agomelatine. Transl. Psychiatry 4:e485. doi:10.1038/tp.2014.125

    CAS  Google Scholar 

  73. Perera TD, Coplan JD, Lisanby SH et al (2007) Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 27:4894–4901. doi:10.1523/JNEUROSCI.0237-07.2007

    Article  CAS  PubMed  Google Scholar 

  74. Zhang C, Wu Z, Hong W et al (2014) Influence of BCL2 gene in major depression susceptibility and antidepressant treatment outcome. J Affect Disord 155:288–294. doi:10.1016/j.jad.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  75. Lohmann E, Periquet M, Bonifati V et al (2003) How much phenotypic variation can be attributed to parkin genotype? Ann Neurol 54:176–185. doi:10.1002/ana.10613

    Article  CAS  PubMed  Google Scholar 

  76. Khan NL, Graham E, Critchley P et al (2003) Parkin disease: a phenotypic study of a large case series. Brain 126:1279–1292

    Article  PubMed  Google Scholar 

  77. Yamamura Y, Hattori N, Matsumine H et al (2000) Autosomal recessive early-onset parkinsonism with diurnal fluctuation: clinicopathologic characteristics and molecular genetic identification. Brain Development 22(Suppl 1):S87–S91

    Article  PubMed  Google Scholar 

  78. Kasten M, Kertelge L, Tadic V et al (2012) Depression and quality of life in monogenic compared to idiopathic, early-onset Parkinson’s disease. Mov Disord 27:754–759. doi:10.1002/mds.24999

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NIMH for having had the possibility of analyzing their data on the STAR*D sample. We also thank the authors of previous publications in this dataset, and foremost, we thank the patients and their families who accepted to be enrolled in the study. Data and biomaterials were obtained from the limited access datasets distributed from the NIH-supported “Sequenced Treatment Alternatives to Relieve Depression” (STAR*D). The study was supported by NIMH Contract No. N01MH90003 to the University of Texas Southwestern Medical Center. The ClinicalTrials.gov identifier is NCT00021528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Serretti.

Ethics declarations

Conflict of interest

Dr. Souery D. has received grant/research support from GlaxoSmithKline and Lundbeck; has served as a consultant or on advisory boards for AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Janssen and Lundbeck. Prof. Montgomery S. has been a consultant or served on Advisory boards: AstraZeneca, Bionevia, Bristol Myers Squibb, Forest, GlaxoSmithKline, Grunenthal, Intellect Pharma, Johnson & Johnson, Lilly, Lundbeck, Merck, Merz, M’s Science, Neurim, Otsuka, Pierre Fabre, Pfizer, Pharmaneuroboost, Richter, Roche, Sanofi, Sepracor, Servier, Shire, Synosis, Takeda, Theracos, Targacept, Transcept, UBC, Xytis and Wyeth. Prof. Kasper S. has received grant/research support from Eli Lilly, Lundbeck, Bristol-Myers Squibb, GlaxoSmithKline, Organon, Sepracor and Servier; has served as a consultant or on advisory boards for AstraZeneca, Bristol-Myers Squibb, GlaxoSmithKline, Eli Lilly, Lundbeck, Pfizer, Organon, Schwabe, Sepracor, Servier, Janssen, and Novartis; and has served on speakers’ bureaus for AstraZeneca, Eli Lily, Lundbeck, Schwabe, Sepracor, Servier, Pierre Fabre, Janssen and Neuraxpharm. Prof. Zohar J. has received grant/research support from Lundbeck, Servier and Pfizer, has served as a consultant or on advisory boards for Servier, Pfizer, Solvay and Actelion, and has served on speakers’ bureaus for Lundbeck, GSK, Jazz and Solvay. Prof. Mendlewicz J. is a member of the Board of the Lundbeck International Neuroscience Foundation and of Advisory Board of Servier. Prof. Serretti A. is or has been consultant/speaker for: Abbott, Abbvie, Angelini, Astra Zeneca, Clinical Data, Boheringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi, Servier. All other authors declare no conflict of interest.

Role of the funding source

This study was supported by an unrestricted grant from Lundbeck for the Group for the Study of Resistant Depression (GSRD). Lundbeck had no further role in the study design, in the collection, analysis, and interpretation of data, in the writing of the report, and in the decision to submit the paper for publication. All authors were actively involved in the design of the study, the analytical method of the study, the selection and review of all scientific content. All authors had full editorial control during the writing of the manuscript and finally approved it. Trial registry name: Australian New Zealand Clinical Trials Registry. (ANZCTR). Registration identification number: ACTRN12613000256774. URL for the registry: http://www.ANZCTR.org.au/ACTRN12613000256774.aspx.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbri, C., Crisafulli, C., Calati, R. et al. Neuroplasticity and second messenger pathways in antidepressant efficacy: pharmacogenetic results from a prospective trial investigating treatment resistance. Eur Arch Psychiatry Clin Neurosci 267, 723–735 (2017). https://doi.org/10.1007/s00406-017-0766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-017-0766-1

Keywords

Navigation