Skip to main content
Log in

Posterior and prefrontal contributions to the development posttraumatic stress disorder symptom severity: an fMRI study of symptom provocation in acute stress disorder

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Acute stress disorder (ASD) is predictive of the development of posttraumatic stress disorder (PTSD). In response to symptom provocation, the exposure to trauma-related pictures, ASD patients showed increased activation of the medial posterior areas of precuneus and posterior cingulate cortex as well as of superior prefrontal cortex in a previous study. The current study aimed at investigating which activated areas are predictive of the development of PTSD. Nineteen ASD patients took part in an fMRI study in which they were shown personalized trauma-related and neutral pictures within 4 weeks of the traumatic event. They were assessed for severity of PTSD 4 weeks later. Activation contrasts between trauma-related and neutral pictures were correlated with subsequent PTSD symptom severity. Greater activation in, among others, right medial precuneus, left retrosplenial cortex, precentral and right superior temporal gyrus as well as less activation in lateral, superior prefrontal and left fusiform gyrus was related to subsequently increased PTSD severity. The results are broadly in line with neural areas related to etiological models of PTSD, namely multisensory associative learning recruiting posterior regions on the one hand and failure to reappraise maladaptive cognitions, thought to involve prefrontal areas, on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th—TR. doi: 10.1176/appi.books.9780890423349

  2. Bryant RA (2013) An update of acute stress disorder. PTSD Res Q 24:1–7

    Google Scholar 

  3. Spiegel D, Koopman C, Cardeña E, Classen C (1996) Dissociative symptoms in the diagnosis of acute stress disorder. In: Ray WJ, Michelson LK (eds) Handbook of dissociation - Theoretical, empirical, and clinical perspectives. Plenum, New York, pp 367–380

    Chapter  Google Scholar 

  4. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington, DC

    Book  Google Scholar 

  5. Bryant RA (2011) Acute stress disorder as a predictor of posttraumatic stress disorder: a systematic review. J Clin Psychiatry 72:233–239

    Article  PubMed  Google Scholar 

  6. Lissek S, Grillon C (2012) Learning models of PTSD. In: Beck JG, Sloan DM (eds) Oxford handbook of traumatic stress disorders. Oxford University Press, Oxford, pp 175–190

    Google Scholar 

  7. Foa EB, Steketee G, Rothbaum BO (1989) Behavioural/cognitive conceptualization of post-traumatic stress disorder. Behav Ther 20:155–176

    Article  Google Scholar 

  8. Brewin CR, Gregory JD, Lipton M, Burgess N (2010) Intrusive images in psychological disorders: characteristics, neural mechanisms, and treatment implications. Psychol Rev 117:210–232. doi:10.1037/a0018113

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ehring T, Ehlers A (2011) Enhanced priming for trauma-related words predicts posttraumatic stress disorder. J Abnorm Psychol 120:234–239

    Article  PubMed  Google Scholar 

  10. Pole N (2007) The psychophysiology of posttraumatic stress disorder: a meta-analysis. Psychol Bull 133:725–746. doi:10.1037/0033-2909.133.5.725

    Article  PubMed  Google Scholar 

  11. Foa EB, Zinbarg R, Rothbaum BO (1992) Uncontrollability and unpredictability in post-traumatic stress disorder: an animal model. Psychol Bull 112:218–232

    Article  CAS  PubMed  Google Scholar 

  12. Rosen JB, Schulkin J (1998) From normal fear to pathological anxiety. Psychol Rev 105:325–350

    Article  CAS  PubMed  Google Scholar 

  13. Zelikowsky M, Hersman S, Chawla MK et al (2014) Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. J Neurosci 34:8462–8466. doi:10.1523/JNEUROSCI.3624-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moustafa AA, Gilbertson MW, Orr SP et al (2013) A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn 81:29–43. doi:10.1038/nature13314.A

    Article  PubMed  Google Scholar 

  15. Fanselow MS, Poulos AM (2005) The neuroscience of mammalian associative learning. Annu Rev Psychol 56:207–234. doi:10.1146/annurev.psych.56.091103.070213

    Article  PubMed  Google Scholar 

  16. Gallagher M, Holland PC (1994) The amygdala complex: multiple roles in associative learning and attention. Proc Natl Acad Sci USA 91:11771–11776. doi:10.1073/pnas.91.25.11771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prévost C, McCabe JA, Jessup RK et al (2011) Differentiable contributions of human amygdalar subregions in the computations underlying reward and avoidance learning. Eur J Neurosci 34:134–145. doi:10.1111/j.1460-9568.2011.07686.x

    Article  PubMed  Google Scholar 

  18. LeDoux J (2003) The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23:727–738. doi:10.1023/A:1025048802629

    Article  PubMed  Google Scholar 

  19. Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79. doi:10.1196/annals.1364.007

    Article  PubMed  Google Scholar 

  20. Adhikari A, Lerner TN, Finkelstein J et al (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527:179–185. doi:10.1038/nature15698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jovanovic T, Ressler KJ (2010) How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 167:648–662. doi:10.1176/appi.ajp.2009.09071074

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brovelli A, Laksiri N, Nazarian B et al (2008) Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory. Cereb Cortex 18:1485–1495. doi:10.1093/cercor/bhm198

    Article  PubMed  Google Scholar 

  23. Corlett PR, Aitken MRF, Dickinson A et al (2004) Prediction error during retrospective revaluation of causal associations in humans. Neuron 44:877–888. doi:10.1016/j.neuron.2004.11.022

    CAS  PubMed  Google Scholar 

  24. Fletcher PC, Anderson JM, Shanks DR et al (2001) Responses of human frontal cortex to surprising events are predicted by formal associative learning theory. Nat Neurosci 4:1043–1048. doi:10.1038/nn733

    Article  CAS  PubMed  Google Scholar 

  25. Geuze E, Vermetten E, Ruf M et al (2008) Neural correlates of associative learning and memory in veterans with posttraumatic stress disorder. J Psychiatr Res 42:659–669. doi:10.1016/j.jpsychires.2007.06.007

    Article  PubMed  Google Scholar 

  26. St-Laurent M, Petrides M, Sziklas V (2009) Does the cingulate cortex contribute to spatial conditional associative learning in the rat? Hippocampus 19:612–622. doi:10.1002/hipo.20539

    Article  PubMed  Google Scholar 

  27. Pergola G, Suchan B (2013) Associative learning beyond the medial temporal lobe: many actors on the memory stage. Front Behav Neurosci. doi:10.3389/fnbeh.2013.00162

    PubMed  PubMed Central  Google Scholar 

  28. Bryant RA, Kemp AH, Felmingham KL et al (2008) Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: an fMRI study. Hum Brain Mapp 29:517–523. doi:10.1002/hbm.20415

    Article  PubMed  Google Scholar 

  29. Williams LM, Kemp AH, Felmingham K et al (2006) Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. Neuroimage 29:347–357. doi:10.1016/j.neuroimage.2005.03.047

    Article  PubMed  Google Scholar 

  30. Hayes JP, Hayes SM, Mikedis AM (2012) Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord. doi:10.1186/2045-5380-2-9

    PubMed  PubMed Central  Google Scholar 

  31. Patel R, Spreng RN, Shin LM, Girard TA (2012) Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 36:2130–2142

    Article  PubMed  Google Scholar 

  32. Sartory G, Cwik JC, Knuppertz H et al (2013) In search of the trauma memory: a meta-analysis of functional neuroimaging studies of symptom provocation in posttraumatic stress disorder (PTSD). PLoS One 8:e58150. doi:10.1371/journal.pone.0058150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fischer H, Wik G, Fredrikson M (1996) Functional neuroanatomy of robbery re-experience: affective memories studied with PET. Neuroreport 7:2081–2086

    Article  CAS  PubMed  Google Scholar 

  34. Osuch EA, Willis MW, Bluhm R et al (2008) Neurophysiological responses to traumatic reminders in the acute aftermath of serious motor vehicle collisions using [15O]-H2O positron emission tomography. Biol Psychiatry 64:327–335

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cwik JC, Sartory G, Schürholt B et al (2014) Posterior midline activation during symptom provocation in acute stress disorder: an fMRI study. Front Psychiatry. doi:10.3389/fpsyt.2014.00049

    PubMed  PubMed Central  Google Scholar 

  36. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  37. Margraf J (1994) Diagnostisches Kurz-interview psychischer Störungen (Mini-DIPS). Beltz-PVU, Weinheim

    Book  Google Scholar 

  38. Bryant RA, Harvey AG, Dang ST, Sackville T (1998) Assessing acute stress disorder: psychometric properties of a structured clinical interview. Psychol Assess 10:215–220

    Article  Google Scholar 

  39. Elsesser K (1999) Interview zur Akuten Belastungsstörung; German version of Acute Stress Disorder Interview (ASDI). Universität Wuppertal, Unveröffentlicht

    Google Scholar 

  40. Hopper JW, Frewen PA, Sack M et al (2007) The Responses to Script-Driven Imagery Scale (RSDI): assessment of state posttraumatic symptoms for psychobiological and treatment research. J Psychopathol Behav Assess 29:249–268. doi:10.1007/s10862-007-9046-0

    Article  Google Scholar 

  41. Blake DD, Weathers FW, Nagy LM et al (1998) Clinician-administered PTSD scale for DSM-IV. National Center for Posttraumatic Stress Disorder-Behavioral Science Division, Boston

    Google Scholar 

  42. Schnyder U, Moergeli H (2002) German version of clinician-administered PTSD scale. J Trauma Stress 15:487–492

    Article  PubMed  Google Scholar 

  43. Weathers FW, Ruscio AM, Keane TM (1999) Psychometric properties of nine scoring rules for the Clinician-Administered Posttraumatic Stress Disorder Scale. Psychol Assess 11:124–133. doi:10.1037//1040-3590.11.2.124

    Article  Google Scholar 

  44. Lang PJ, Bradley MM, Cuthbert BN (1997) International affective picture system (IAPS): technical manual and affective ratings. Gainesville

  45. Friston KJ, Rotshtein P, Geng J-J et al (2006) A critique of functional localisers. Neuroimage 30:1077–1087

    Article  CAS  PubMed  Google Scholar 

  46. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  47. Freton M, Lemogne C, Bergouignan L et al (2014) The eye of the self: precuneus volume and visual perspective during autobiographical memory retrieval. Brain Struct Funct 219:959–968. doi:10.1007/s00429-013-0546-2

    Article  PubMed  Google Scholar 

  48. Qin P, Duncan N, Northoff G (2013) Why and how is the self-related to the brain midline regions? Front Hum Neurosci. doi:10.3389/fnhum.2013.00909

    Google Scholar 

  49. Addis DR, Knapp K, Roberts RP, Schacter DL (2012) Routes to the past: neural substrates of direct and generative autobiographical memory retrieval. Neuroimage 59:2908–2922. doi:10.1016/j.neuroimage.2011.09.066.Routes

    Article  PubMed  Google Scholar 

  50. Summerfield JJ, Hassabis D, Maguire EA (2009) Cortical midline involvement in autobiographical memory. Neuroimage 44:1188–1200. doi:10.1016/j.neuroimage.2008.09.033

    Article  PubMed  PubMed Central  Google Scholar 

  51. Robinson S, Keene CS, Iaccarino HF et al (2011) Involvement of retrosplenial cortex in forming associations between multisensory stimuli. Behav Neurosci 125:578–587

    Article  PubMed  PubMed Central  Google Scholar 

  52. Eger E, Henson RN, Driver J, Dolan RJ (2007) Mechanisms of top-down facilitation in perception of visual objects studied by fMRI. Cereb Cortex 17:2123–2133

    Article  CAS  PubMed  Google Scholar 

  53. Fenske MJ, Aminoff E, Gronau N, Bar M (2006) Top-down facilitation of visual object recognition: object-based and context-based contributions. Prog Brain Res 155:3–21

    Article  PubMed  Google Scholar 

  54. Cauda F, Geminiani G, D’Agata F et al (2010) Functional connectivity of the posteromedial cortex. PLoS One 5:e13107. doi:10.1371/journal.pone.0013107

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583. doi:10.1093/brain/awl004

    Article  PubMed  Google Scholar 

  56. Hendler T, Rotshtein P, Yeshurun Y et al (2003) Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context. Neuroimage 19:587–600. doi:10.1016/S1053-8119(03)00141-1

    Article  PubMed  Google Scholar 

  57. Michael T, Ehlers A, Halligan SL (2005) Enhanced priming for trauma-related material in posttraumatic stress disorder. Emotion 5:103–112

    Article  PubMed  Google Scholar 

  58. Whalley MG, Kroes MCW, Huntley Z et al (2013) An fMRI investigation of posttraumatic flashbacks. Brain Cogn 81:151–159. doi:10.1016/j.bandc.2012.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kassam KS, Markey AR, Cherkassky VL et al (2013) Identifying emotions on the basis of neural activation. PLoS One 8:e66032. doi:10.1371/journal.pone.0066032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    Article  CAS  PubMed  Google Scholar 

  61. Shin LM, Bush G, Milad MR et al (2011) Exaggerated activation of dorsal anterior cingulate cortex during cognitive interference: a monozygotic twin study in posttraumatic stress disorder. Am J Psychiatry 168:979–985

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hou C, Liu J, Wang K et al (2007) Brain responses to symptom provocation and trauma-related short-term memory recall in coal mining accident survivors with acute severe PTSD. Brain Res 1144:165–174. doi:10.1016/j.brainres.2007.01.089

    Article  CAS  PubMed  Google Scholar 

  63. Rauch SL, van der Kolk BA, Fisler RE et al (1996) A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch Gen Psychiatry 53:380–387

    Article  CAS  PubMed  Google Scholar 

  64. Miller BL, Cummings JL (2007) The human frontal lobes: functions and disorders. Guildford Press, New York

    Google Scholar 

  65. Hornak J, O´Doherty J, Rolls E et al (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478

    Article  CAS  PubMed  Google Scholar 

  66. Morey RA, Petty CM, Cooper DA et al (2008) Neural systems for executive and emotional processing are modulated by symptoms of posttraumatic stress disorder in Iraq War veterans. Psychiatry Res 162:59–72. doi:10.1016/j.pscychresns.2007.07.007.Neural

    Article  PubMed  PubMed Central  Google Scholar 

  67. Buhle JT, Silvers JA, Wager TD et al (2014) Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex 24:2981–2990. doi:10.1093/cercor/bht154

    Article  PubMed  Google Scholar 

  68. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93. doi:10.1016/j.tics.2010.11.004

    Article  PubMed  Google Scholar 

  69. McRae K, Hughes B, Chopra S et al (2010) The neural bases of distraction and reappraisal. J Cogn Neurosci 22:248–262

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ochsner KN, Silvers JA, Buhle JT (2012) Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci 1251:E1–E24. doi:10.1111/j.1749-6632.2012.06751.x

    Article  PubMed  PubMed Central  Google Scholar 

  71. Falquez R, Couto B, Ibanez A et al (2014) Detaching from the negative by reappraisal: the role of right superior frontal gyrus (BA9/32). Front Behav Neurosci. doi:10.3389/fnbeh.2014.00165

    PubMed  Google Scholar 

  72. Bremner JD, Vermetten E, Schmahl C et al (2005) Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med 35:791–806. doi:10.1017/S0033291704003290

    Article  PubMed  PubMed Central  Google Scholar 

  73. Scott JC, Matt GE, Wrocklage KM et al (2015) A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychol Bull 141:105–140

    Article  PubMed  Google Scholar 

  74. Kleim B, Ehring T, Ehlers A (2012) Perceptual processing advantages for trauma-related visual cues in post-traumatic stress disorder. Psychol Med 42:173–181. doi:10.1017/S0033291711001048

    Article  CAS  PubMed  Google Scholar 

  75. Buckley TC, Blanchard EB, Neill WT (2000) Information processing and PTSD: a review of the empirical literature. Clin Psychol Rev 20:1041–1065

    Article  CAS  PubMed  Google Scholar 

  76. Elsesser K, Sartory G, Tackenberg A (2004) Attention, heart rate, and startle response during exposure to trauma-relevant pictures: a comparison of recent trauma victims and patients with posttraumatic stress disorder. J Abnorm Psychol 113:289–301

    Article  PubMed  Google Scholar 

  77. Zlomuzica A, Dere D, Machulska A et al (2014) Episodic memories in anxiety disorders: clinical implications. Front Behav Neurosci. doi:10.3389/fnbeh.2014.00131

    Google Scholar 

  78. Bryant RA, Guthrie RM (2005) Maladaptive appraisals as a risk factor for post traumatic stress. A study of trainee fire fighters. Psychol Sci 16:749–752. doi:10.1111/j.1467-9280.2005.01608

    Article  PubMed  Google Scholar 

  79. Brewin CR, Andrews B, Valentine JD (2000) Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults. J Consult Clin Psychol 68:748–766. doi:10.1037//0022-006X.68.5.748

    Article  CAS  PubMed  Google Scholar 

  80. Hansen M, Elklit A (2011) Predictors of acute stress disorder in response to bank robbery. Eur J Psychotraumatol. doi:10.3402/ejpt.v2i0.5864

    PubMed  PubMed Central  Google Scholar 

  81. Kleim B, Ehlers A, Glucksman E (2007) Early predictors of chronic post-traumatic stress disorder in assault survivors. Psychol Med 37:1457–1467

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ozer EJ, Best SR, Lipsey TL, Weiss DS (2003) Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull 129:52–73

    Article  PubMed  Google Scholar 

  83. Meiser-Stedman R, Shepperd A, Glucksman E et al (2014) Thought control strategies and rumination in youth with acute stress disorder and posttraumatic stress disorder following single-event trauma. J Child Adolesc Psychopharmacol 24:47–51. doi:10.1089/cap.2013.0052

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ehlers A, Clark DM (2000) A cognitive model of posttraumatic stress disorder. Behav Res Ther 38:319–345

    Article  CAS  PubMed  Google Scholar 

  85. Elsesser K, Freyth C, Lohrmann T, Sartory G (2008) Startle reactivity and peritraumatic dissociations in acute stress disorder. J Psychophysiol 22:185–194. doi:10.1027/0269-8803.22.4.185

    Article  Google Scholar 

  86. Meiser-Stedman R, Dalgleish T, Glucksman E et al (2009) Maladaptive cognitive appraisals mediate the evolution of post- traumatic stress reactions: a 6-month follow up of child and adolescent assault and motor vehicle accident survivors. J Abnorm Psychol 118:778–787. doi:10.1037/a0016945

    Article  PubMed  Google Scholar 

  87. Woud ML, Holmes EA, Postma P et al (2012) Ameliorating intrusive memories of distressing experiences using computerized reappraisal training. Emotion 12:778–784. doi:10.1037/a0024992

    Article  PubMed  Google Scholar 

  88. Woud ML, Postma P, Holmes EA, Mackintosh B (2013) Reducing analogue trauma symptoms by computerized reappraisal training—considering a cognitive prophylaxis? J Behav Ther Exp Psychiatry 44:312–315. doi:10.1016/j.jbtep.2013.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kleim B, Grey N, Wild J et al (2013) Cognitive change predicts symptom reduction with cognitive therapy for posttraumatic stress disorder. J Consult Clin Psychol 81:383–393. doi:10.1037/a0031290

    Article  PubMed  Google Scholar 

  90. Seitz RJ, Nickel J, Azari NP (2006) Functional modularity of the medial prefrontal cortex: involvement in human empathy. Neuropsychology 6:743–751

    Article  Google Scholar 

  91. Van Overwalle F, Baetens K (2009) Understanding others´ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584

    Article  PubMed  Google Scholar 

  92. Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677. doi:10.1146/annurev.neuro.27.070203.144220

    Article  CAS  PubMed  Google Scholar 

  93. Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45. doi:10.1146/annurev.psych.57.102904.190143

    Article  PubMed  Google Scholar 

  94. de Lussanet MHE, Fadiga L, Michels L et al (2008) Interaction of visual hemifield and body view in biological motion perception. Eur J Neurosci 27:514–522. doi:10.1111/j.1460-9568.2007.06009.x

    Article  PubMed  Google Scholar 

  95. Michels L, Kleiser R, de Lussanet MHE et al (2009) Brain activity for peripheral biological motion in the posterior superior temporal gyrus and the fusiform gyrus: dependence on visual hemifield and view orientation. Neuroimage 45:151–159. doi:10.1016/j.neuroimage.2008.10.063

    Article  PubMed  Google Scholar 

  96. Schwarz KA, Wieser MJ, Gerdes ABM et al (2013) Why are you looking like that? How the context influences evaluation and processing of human faces. Soc Cogn Affect Neurosci 8:438–445. doi:10.1093/scan/nss013

    Article  PubMed  Google Scholar 

  97. Sabatinelli D, Fortune EE, Li Q et al (2011) Emotional perception: meta-analyses of face and natural scene processing. Neuroimage 54:2524–2533. doi:10.1016/j.neuroimage.2010.10.011

    Article  PubMed  Google Scholar 

  98. Couvy-Duchesne B, Ebejer JL, Gillespie NA et al (2016) Head motion and inattention/hyperactivity share common genetic influences: implications for fMRI studies of ADHD. PLoS One 11:e0146271. doi:10.1371/journal.pone.0146271

    Article  PubMed  PubMed Central  Google Scholar 

  99. Power JD, Mitra A, Laumann TO et al (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341. doi:10.1016/j.neuroimage.2013.08.048

    Article  PubMed  Google Scholar 

  100. Van Dijk KRA, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438. doi:10.1016/j.neuroimage.2011.07.044

    Article  PubMed  Google Scholar 

  101. Patel AX, Kundu P, Rubinov M et al (2014) A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Neuroimage 95:287–304. doi:10.1016/j.neuroimage.2014.03.012

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Jan C. Cwik received a postgraduate grant from the University of Wuppertal while completing the study which is a part requirement of his Ph.D. We thank Helen Copeland-Vollrath for editing the manuscript.

Financial support

The study was supported by the Deutsche Forschungsgemeinschaft (DFG) (SA 735/18-1; SE 494/7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. Cwik.

Ethics declarations

Conflict of interest

None.

Ethical standards

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Additional information

Gudrun Sartory: Deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cwik, J.C., Sartory, G., Nuyken, M. et al. Posterior and prefrontal contributions to the development posttraumatic stress disorder symptom severity: an fMRI study of symptom provocation in acute stress disorder. Eur Arch Psychiatry Clin Neurosci 267, 495–505 (2017). https://doi.org/10.1007/s00406-016-0713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0713-6

Keywords

Navigation