Skip to main content
Log in

Comparison of fiber delivered CO2 laser and electrocautery in transoral robot assisted tongue base surgery

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

To compare intra-operative and post-operative effectiveness of fiber delivered CO2 laser to monopolar electrocautery in robot assisted tongue base surgery. Prospective non-randomized clinical study. Twenty moderate to severe obstructive sleep apnea (OSA) patients, non-compliant with Continuous Positive Airway Pressure (CPAP), underwent Transoral Robotic Surgery (TORS) using the Da Vinci surgical robot in our University Hospital. OSA was treated with monopolar electrocautery in 10 patients, and with flexible CO2 laser fiber in another 10 patients. The following parameters in the two sets are analyzed: Intraoperative bleeding that required cauterization, robot operating time, need for tracheotomy, postoperative self-limiting bleeding, length of hospitalization, duration until start of oral intake, pre-operative and post-operative minimum arterial oxygen saturation, pre-operative and post-operative Epworth Sleepiness Scale score, postoperative airway complication and postoperative pain. Mean follow-up was 12 months. None of the patients required tracheotomy and there were no intraoperative complications related to the use of the robot or the CO2 laser. The use of CO2 laser in TORS-assisted tongue base surgery resulted in less intraoperative bleeding that required cauterization, shorter robot operating time, shorter length of hospitalization, shorter duration until start of oral intake and less postoperative pain, when compared to electrocautery. Postoperative apnea–hypopnea index scores showed better efficacy of CO2 laser than electrocautery. Comparison of postoperative airway complication rates and Epworth sleepiness scale scores were found to be statistically insignificant between the two groups. The use of CO2 laser in robot assisted tongue base surgery has various intraoperative and post-operative advantages when compared to monopolar electrocautery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Solares CA, Strome M (2007) Transoral robot-assisted CO2 Laser supraglottic laryngectomy: experimental and clinical data. Laryngoscope 117(5):817–820

    Article  PubMed  Google Scholar 

  2. Remacle M, Matar N, Lawson G et al (2012) Combining a new CO2 laser wave guide with transoral robotic surgery: a feasibility study on four patients with malignant tumors. Eur Arch Otorhinolaryngol 269:1833–1837

    Article  PubMed  Google Scholar 

  3. O’Malley BW Jr, Weinstein GS, Snyder W et al (2006) Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 116(8):1465–1472

    Article  PubMed  Google Scholar 

  4. Weinstein GS, Quon H, Newman HJ et al (2012) Transoral robotic surgery alone for oropharyngeal cancer: an analysis of local control. Arch Otolaryngol Head Neck Surg 138(7):628–634

    Article  PubMed  Google Scholar 

  5. Helman SN, Schwedhelm T, Kadakia S et al (2015) Transoral robotic surgery in oropharyngeal carcinoma. Arch Pathol Lab Med 139(11):1389–1397

    Article  PubMed  Google Scholar 

  6. White H, Ford S, Bush B et al (2013) Salvage surgery for recurrent cancers of the oropharynx: comparing TORS with standard open surgical approaches. JAMA Otolaryngol Head Neck Surg 139(8):773–778

    Article  PubMed  Google Scholar 

  7. Wolf T, Bhattacharyya S 2010 Synopsis of results: comparison of tongue incisions created using the flexible CO2 laser fiber and monopolar electrosurgery in an animal model. Head and Neck White paper archive

  8. Cristalli G, Mercante G, Covello R et al (2012) Histopathological assessment in glossectomy: harmonic shears versus monopolar electrosurgery pilot study. Otolaryngol Head Neck Surg 147(6):1076–1082

    Article  PubMed  Google Scholar 

  9. Hoffmann TK, Schuler PJ, Bankfalvi A et al (2014) Comparative analysis of resection tools suited for transoral robot-assisted surgery. Eur Arch Otorhinolaryngol 271(5):1207–1213

    Article  PubMed  Google Scholar 

  10. Hanby DF, Gremillion G, Zieske AW et al (2011) Harmonic scalpel versus flexible CO2 laser for tongue resection: a histopathological analysis of thermal damage in human cadavers. World J Surg Oncol 9:83

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tulikangas PK, Smith T, Falcone T et al (2001) Gross and histologic characteristics of laparoscopic injuries with four different energy sources. Fertil Steril 75(4):806–810

    Article  CAS  PubMed  Google Scholar 

  12. Choussein S, Srouji SS, Farland LV et al (2015) Flexible carbon dioxide laser fiber versus ultrasonic scalpel in robot-assisted laparoscopic myome. J Minim Invasive Gynecol 22(7):1183–1190

    Article  PubMed  Google Scholar 

  13. Strong MS, Jako GJ (1972) Laser surgery in the larynx: early clinical experience with continuous CO2 laser. Ann Otol Rhinol Laryngol 81(6):791–798

    Article  CAS  PubMed  Google Scholar 

  14. Devaiah AK, Shapshay SM, Desai U et al (2005) Surgical utility of a new carbon dioxide laser fiber: functional and histological study. Laryngoscope 115(8):1463–1468

    Article  PubMed  Google Scholar 

  15. Lee JM, Weinstein GS, O’Malley BW Jr et al (2012) Transoral robot-assisted lingual tonsillectomy and uvulopalatopharyngoplasty for obstructive sleep apnea. Ann Otol Rhinol Laryngol 121(10):635–639

    Article  PubMed  Google Scholar 

  16. Vicini C, Montevecchi F, Magnuson JS (2013) Robotic surgery for obstructive sleep apnea published online. Curr Otorhinolaryngol Rep 1:130–136.

    Article  Google Scholar 

  17. Chiffer RC, Schwab RJ, Keenan BT et al (2015) Volumetric MRI analysis pre- and post-Transoral robotic surgery for obstructive sleep apnea. Laryngoscope 125(8):1988–1995

    Article  PubMed  Google Scholar 

  18. Vicini C, Montevecchi F, Campanini A et al (2014) Clinical outcomes and complications associated with TORS for OSAHS: a benchmark for evaluating an emerging surgical technology in a targeted application for benign disease. ORL J Otorhinolaryngol Relat Spec 76(2):63–69

    Article  PubMed  Google Scholar 

  19. Hockstein NG, O’Malley BW Jr, Weinstein GS (2006) Assessment of intraoperative safety in transoral robotic surgery. Laryngoscope 116:165–168

    Article  PubMed  Google Scholar 

  20. Holsinger FC, Prichard CN, Shapira G et al (2006) Use of the photonic band gap fiber assembly CO2 laser system in head and neck surgical oncology. Laryngoscope 116(7):1288–1290

    Article  PubMed  Google Scholar 

  21. Liboon J, Funkhouser W, Terris DJ (1997) A comparison of mucosal incisions made by scalpel, CO2 laser, electrocautery, and constant-voltage electrocautery. Otolaryngol Head Neck Surg 116:379–385

    Article  CAS  PubMed  Google Scholar 

  22. Temelkuran B, Hart SD, Benoit G et al (2002) Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420:650–653

    Article  CAS  PubMed  Google Scholar 

  23. Koufman JA, Rees KJ, Frazier WD et al (2007) Office-based laryngeal laser surgery: a review of 443 cases using three wavelengths. Otolaryngology Head Neck Surg 137:146–151

    Article  Google Scholar 

  24. Food and Drug Administration, Department of Health and Human Services (2005) 510(k) clearance: K050541 Omniguide Beam-Path CO2 Mark I Laser Beam Delivery System.

  25. Torres D, Weisberg O, Shapira G. et al. (2005) Omniguide photonic bandgap fibers for flexible delivery of CO2 laser energy for laryngeal and airway surgery. Proc SPIE 5686:310–321

    Article  Google Scholar 

  26. Shurgalin M, Anastassiou C (2008) A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers. Biomed Instrum Technol 42:318–325

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mihai Ibanescu, PhD, for his expertise in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Karaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaman, M., Gün, T., Temelkuran, B. et al. Comparison of fiber delivered CO2 laser and electrocautery in transoral robot assisted tongue base surgery. Eur Arch Otorhinolaryngol 274, 2273–2279 (2017). https://doi.org/10.1007/s00405-017-4449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-017-4449-3

Keywords

Navigation