Skip to main content

Advertisement

Log in

Establishment and characterization of an experimental mouse model of allergic rhinitis

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Allergic rhinitis (AR) is a common worldwide disease. Animal studies on AR were adopted in various investigations. However, animal studies simply aimed at establishing an animal model for AR have been seldom seen. The purpose of this study was to introduce an easy-to-establish experimental mouse model of AR. To develop a mouse model of AR, 38 Balb/c mice were randomly assigned to two groups. Mice in the study group were sensitized by intraperitoneal (IP) injection of ovalbumin (OVA) on day 1 and 6, followed by continuous inhalation (IH) of OVA solution for 1 week (day 8–14) using a newly designed inhalation box. The control group mice received sensitization of IP normal saline and IH sterilized distilled water instead of OVA. Before and after sensitization, the frequencies of nasal symptoms (sneezing, nasal rubbing) were recorded and the serum levels of total immunoglobulin E (IgE) were evaluated using ELISA. Finally, the murine nasal mucosal tissues were stained by Giemsa solution to estimate the degree of mast cell infiltration. After sensitization by IP and IH OVA, the study group showed significant phenotypic changes including increased sneezing and rubbing. Pathological and cytological findings also confirmed significant elevated serum total IgE titer and local mast cell infiltration in the study group statistically. We successfully developed a workable experimental animal model for AR that was more easily sensitized using our new-designed inhalation box, with less stress and more precisely to be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Skoner DP (2001) Allergic rhinitis: definition, epidemiology, pathophysiology, detection, and diagnosis. J Allergy Clin Immunol 108(supp1):S2–S8

    Article  CAS  PubMed  Google Scholar 

  2. Nakaya M, Nakaya M, Fukushima Y, Takeuchi N, Kaga K (2005) Nasal allergic response mediated by histamine H3 receptors in murine allergic rhinitis. Laryngoscope 115:1778–1784

    Article  PubMed  Google Scholar 

  3. Kanaizumi E, Shirasaki H, Sato J, Watanabe K, Himi T (2002) Establishment of animal model of antigen-specific T lymphocyte recruitment into nasal mucosa. Scand J Immunol 56:376–382

    Article  CAS  PubMed  Google Scholar 

  4. Miyahara S, Miyahara N, Takeda K, Anthony Joetham, Gelfand EW (2005) Physiologic assessment of allergic rhinitis in mice: role of the high-affinity IgE receptor (FceRI). J Allergy Clin Immunol 116:1020–1027

    Article  CAS  PubMed  Google Scholar 

  5. Saito H, Howie K, Wattie J et al (2001) Allergen-induced murine upper airway inflammation: local and systemic changes in murine experimental allergic rhinitis. Immunology 104:226–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Asakura K, Saito H, Watanabe M, Ogasawara H, Matsui T, Kataura A (1998) Effects of anti-IL-5 monoclonal antibody on the murine model of nasal allergy. Int Arch Allergy Immunol 116:49–52

    Article  CAS  PubMed  Google Scholar 

  7. Xu G, Cheng L, Wen WP et al (2007) Inverse association between T-cell immunoglobulin and mucin domain-1 and T-bet in a mouse model of allergic rhinitis. Laryngoscope 117:960–964

    Article  CAS  PubMed  Google Scholar 

  8. Kawase M, He F, Kubota A, Harata G, Hiramatsu M (2007) Orally administrated Lactobacillus gasseri TMC0356 and Lactobacillus GG alleviated nasal blockage of guinea pig with allergic rhinitis. Microbiol Immunol 51:1109–1114

    Article  CAS  PubMed  Google Scholar 

  9. Nabe T, Mizutani N, Osaki S, Sugahara S, Takenaka H, Kohno S (2001) Comparison of cedar pollen-induced allergic rhinitis in passively and actively sensitized guinea pigs. Jpn J Pharmacol 85:409–415

    Article  CAS  PubMed  Google Scholar 

  10. Nabe T, Kubota K, Terada T, Takenaka H, Kohno S (2005) Effect of oral immunotherapy on nasal blockage in experimental allergic rhinitis. J Pharmacol Sci 98:380–387

    Article  CAS  PubMed  Google Scholar 

  11. Nabe T, Kubota K, Mizutani N, Fujii M et al (2008) Effect of local nasal immunotherapy on nasal blockage in pollen-induced allergic rhinitis of guinea pigs. Allergol Int 57:419–427

    Article  CAS  PubMed  Google Scholar 

  12. Nabe T, Shimizu K, Mizutani N et al (1997) A new model of experimental allergic rhinitis using Japanese cedar pollen in guinea pigs. Jpn J Pharmacol 75:243–251

    Article  CAS  PubMed  Google Scholar 

  13. Tsunematsu M, Yamaji T, Kozutsumi D, Murakami R, Kimura S, Kino K (2007) Establishment of an allergic rhinitis model in mice for the evaluation of nasal symptoms. Life Sci 80:1388–1394

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu T, Hirano H, Majima Y, Sakakura Y (2000) A mechanism of antigen-induced mucus production in nasal epithelium of sensitized rats. A comparison with lipopolysaccharide-induced mucus production. Am J Respir Crit Care Med 161:1648–1654

    Article  CAS  PubMed  Google Scholar 

  15. Kawase M, He F, Kubota A, Hata JY, Kobayakawa SI, Hiramatsu M (2006) Inhibitory effect of Lactobacillus gasseri TMC0356 and Lactobacillus GG on enhanced vascular permeability of nasal mucosa in experimental allergic rhinitis of rats. Biosci Biotechnol Biochem 70:3025–3030

    Article  CAS  PubMed  Google Scholar 

  16. Van de Rijn M, Mehlhop PD, Judkins A, Rothenberg ME, Luster AD, Oettgen HC (1998) A murine model of allergic rhinitis: studies on the role of IgE in pathogenesis and analysis of the eosinophil influx elicited by allergen and eotaxin. J Allergy Clin Immunol 102:65–74

    Article  PubMed  Google Scholar 

  17. Jiang JS, Chien HC, Chen CM, Lin CN, Ko WC (2007) Potent suppressive effects of 3-O-methylquercetin 5,7,3′,4′-O-tetraacetate on ovalbumin-induced airway hyperresponsiveness. Planta Med 73:1156–1162

    Article  CAS  PubMed  Google Scholar 

  18. Chang YS, Kim YK, Bahn JW et al (2005) Comparison of asthma phenotypes using different sensitizing protocols in mice. Korean J Intern Med 20:152–158

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ko WC, Shih CM, Chen MC et al (2004) Suppressive effects of 3-O-methylquercetin on ovalbumin-induced airway hyperresponsiveness. Planta Med 70:1123–1137

    Article  CAS  PubMed  Google Scholar 

  20. McMillan SJ, Lloyd CM (2004) Prolonged allergen challenge in mice leads to persistent airway remodelling. Clin Exp Allergy 34:497–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Suzuki M, Zheng XF, Zhang XS et al (2010) A novel allergen-specific therapy for allergy using CD40-silenced dendritic cells. J Allergy Clin Immunol 125:737–743

    Article  CAS  PubMed  Google Scholar 

  22. Labonte I, Hassan M, Risse PA et al (2009) The effects of repeated allergen challenge on airway smooth muscle structural and molecular remodeling in a rat model of allergic asthma. Am J Physiol Lung Cell Mol Physiol 297:698–705

    Article  Google Scholar 

  23. Huntington JA, Stein PE (2001) Structure and properties of ovalbumin. J Chromatogr B Biomed Sci Appl 756:189–198

    Article  CAS  PubMed  Google Scholar 

  24. Nisbet AD, Saundry RH, Moir AJG, Fothergill LA, Fothergill JE (1981) The complete amino-acid sequence of hen ovalbumin. Eur J Biochem 115:335

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro HM, Mandy F (2007) Cytometry in malaria: moving beyond Giemsa. Cytometry A 71:643–645

    Article  PubMed  Google Scholar 

  26. Yoo JY, Kim N, Park YS et al (2007) Detection rate of Helicobacter pylori against a background of atrophic gastritis and/or intestinal metaplasia. J Clin Gastroenterol 41:751–755

    Article  PubMed  Google Scholar 

  27. Damsgaard TE, Olesen AB, Sorensen FB, Thestrup-Pedersen K, Schiotz PO (1997) Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin. Arch Dermatol Res 289:256–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Chang Gung Memorial Hospital (CMRPG870301). The authors also thank Shu-Yo Wang for his contributions to this project.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yo Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, MT., Huang, SC. & Kang, HY. Establishment and characterization of an experimental mouse model of allergic rhinitis. Eur Arch Otorhinolaryngol 272, 1149–1155 (2015). https://doi.org/10.1007/s00405-014-3176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-3176-2

Keywords

Navigation