Skip to main content
Log in

Modulation of wireless (2.45 GHz)-induced oxidative toxicity in laryngotracheal mucosa of rat by melatonin

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

It is well known that oxidative stress induces larynx cancer, although antioxidants induce modulator role on etiology of the cancer. It is well known that electromagnetic radiation (EMR) induces oxidative stress in different cell systems. The aim of this study was to investigate the possible protective role of melatonin on oxidative stress induced by Wi-Fi (2.45 GHz) EMR in laryngotracheal mucosa of rat. For this purpose, 32 male rats were equally categorized into four groups, namely controls, sham controls, EMR-exposed rats, EMR-exposed rats treated with melatonin at a dose of 10 mg/kg/day. Except for the controls and sham controls, the animals were exposed to 2.45 GHz radiation during 60 min/day for 28 days. The lipid peroxidation levels were significantly (p < 0.05) higher in the radiation-exposed groups than in the control and sham control groups. The lipid peroxidation level in the irradiated animals treated with melatonin was significantly (p < 0.01) lower than in those that were only exposed to Wi-Fi radiation. The activity of glutathione peroxidase was lower in the irradiated-only group relative to control and sham control groups but its activity was significantly (p < 0.05) increased in the groups treated with melatonin. The reduced glutathione levels in the mucosa of rat did not change in the four groups. There is an apparent protective effect of melatonin on the Wi-Fi-induced oxidative stress in the laryngotracheal mucosa of rats by inhibition of free radical formation and support of the glutathione peroxidase antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Öngel K, Gümral N, Özgüner F (2010) The potential effects of electromagnetic field: a review. Cell Membr Free Radic Res 1:85–89

    Google Scholar 

  2. Crouzier D, Testylier G, Perrin A et al (2007) Which neurophysiologic effects at low level 2.45 GHz RF exposure? Pathol Biol (Paris) 55:235–241

    Article  CAS  Google Scholar 

  3. Lukac N, Massanyi P, Roychoudhury S et al (2011) In vitro effects of radiofrequency electromagnetic waves on bovine spermatozoa motility. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1417–1423. doi:10.1080/10934529.2011.607037

    PubMed  CAS  Google Scholar 

  4. Gümral N, Naziroglu M, Koyu A et al (2009) Effects of selenium and L-Carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res 132:153–163. doi:10.1007/s12011-009-8372-3

    Article  PubMed  Google Scholar 

  5. Türker Y, Nazıroğlu M, Gümral N et al (2011) Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res 143:1640–1650. doi:10.1007/s12011-011-8994-0

    Article  PubMed  Google Scholar 

  6. Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interac. 111–112:1–14

    Article  Google Scholar 

  7. Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress- induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191. doi:10.1007/s11064-009-0015-8

    Article  PubMed  Google Scholar 

  8. Nazıroğlu M, Ciğ B, Doğan S et al (2012) 2.45-Gz wireless devices induce oxidative stress and proliferation through cytosolic Ca²+ influx in human leukemia cancer cells. Int J Radiat Biol 88:449–456. doi:10.3109/09553002.2012.682192

    Article  PubMed  Google Scholar 

  9. Tan DX, Manchester LC, Terron MP et al (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42. doi:10.1111/j.1600-079X.2006.00407.x

    Article  PubMed  CAS  Google Scholar 

  10. Fic M, Podhorska-Okolow M, Dziegiel P et al (2007) Effect of melatonin on cytotoxicity of doxorubicin toward selected cell lines (human keratinocytes, lung cancer cell line A-549, laryngeal cancer cell line Hep-2). In Vivo. 21:513–518

    PubMed  CAS  Google Scholar 

  11. Nazıroğlu M, Çelik Ö, Özgül C et al (2012) Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol Behav 105:683–692. doi:10.1016/j.physbeh.2011.10.005

    Article  PubMed  Google Scholar 

  12. Karaman E, Uzun H, Papila I et al (2010) Serum paraoxonase activity and oxidative DNA damage in patients with laryngeal squamous cell carcinoma. J Craniofac Surg. 21:1745–1749. doi:10.1097/SCS.0b013e3181f4040a

    Article  PubMed  Google Scholar 

  13. Manjunath MK, Annam V, Suresh DR (2010) Significance of free radical injury in laryngeal and hypopharyngeal cancers. J Laryngol Otol 124:315–317. doi:10.1017/S0022215109991721

    Article  PubMed  CAS  Google Scholar 

  14. Placer ZA, Cushman L, Johnson BC (1966) Estimation of products of lipid peroxidation (malonyldialdehyde) in biological fluids. Anal Biochem 16:359–364

    Article  PubMed  CAS  Google Scholar 

  15. Sedlak J, Lindsay RHC (1968) Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellmann’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  18. Kovacic P, Somanathan R (2008) Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell Membranes. Cell Membr Free Radic Res 2:56–69. doi:10.3109/10799890903582578

    Google Scholar 

  19. Kumar S, Kesari KK, Behari J (2011) The therapeutic effect of a pulsed electromagnetic field on the reproductive patterns of male Wistar rats exposed to a 2.45-GHz microwave field. Clinics (Sao Paulo) 66:1237–1245

    Article  Google Scholar 

  20. Taysi S, Uslu C, Akcay F et al (2003) Malondialdehyde and nitric oxide levels in the plasma of patients with advanced laryngeal cancer. Surg Today 33:651–654

    Article  PubMed  CAS  Google Scholar 

  21. Kacakci A, Aslan I, Toplan S et al (2009) Significance of the counteracting oxidative and antioxidative systems in the pathogenesis of laryngeal carcinoma. J Otolaryngol Head Neck Surg. 38:172–177

    PubMed  Google Scholar 

  22. Inci E, Civelek S, Seven A et al (2003) Laryngeal cancer: in relation to oxidative stress. Tohoku J Exp Med 200:17–23

    Article  PubMed  Google Scholar 

  23. Ceyhan AM, Akkaya VB, Güleçol SC et al (2012) Protective effects of β-glucan against oxidative injury induced by 2.45-GHz electromagnetic radiation in the skin tissue of rats. Arch Dermatol Res 304:521–527. doi:10.1007/s00403-012-1205-9

    Article  PubMed  CAS  Google Scholar 

  24. Naziroğlu M, Gümral N (2009) Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int J Radiat Biol 85:680–689. doi:10.1080/09553000903009530

    Article  PubMed  Google Scholar 

  25. Kesari KK, Kumar S, Behari J (2011) 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med 30:219–234. doi:10.3109/15368378.2011.587930

    Article  PubMed  CAS  Google Scholar 

  26. Reiter RJ, Tan DX, Osuna C et al (2000) Actions of melatonin in the reduction of oxidative status. J Biomed Sci 7:444–458

    Article  PubMed  CAS  Google Scholar 

  27. Köylü H, Mollaoglu H, Ozguner F et al (2006) Melatonin modulates 900 MHz microwave-induced lipid peroxidation changes in rat brain. Toxicol Ind Health 22:211–216

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors has any conflict of interest, financial or otherwise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giray Aynali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aynali, G., Nazıroğlu, M., Çelik, Ö. et al. Modulation of wireless (2.45 GHz)-induced oxidative toxicity in laryngotracheal mucosa of rat by melatonin. Eur Arch Otorhinolaryngol 270, 1695–1700 (2013). https://doi.org/10.1007/s00405-013-2425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-013-2425-0

Keywords

Navigation