Skip to main content
Log in

Promontorial cochleostomy in nonhuman primates. Is it atraumatic?

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The purpose of this study is to determine if surgical approach to the inner ear is feasible without generating a hearing loss in an animal model. Five Macaca fascicularis were used as experimental animals and followed up for 27 months. Mastoidectomy, posterior tympanotomy and promontorial cochleostomy were performed on four specimens and one specimen was kept as control animal. Before and after drilling and exposing the endosteal layer and the membranous labyrinth, otoacustic emissions (dPOAE) and auditory brainstem responses (ABR) were used to test hearing. In vivo experimental studies prove it is reliable to expose the membranous labyrinth without causing hearing loss. dPOAE were present after 3, 6, 12, 24 and 26 months of follow-up. Regarding the ABR results from the four M. fascicularis in which a cochleostomy has been carried out, auditory thresholds are within the 20–30 dB interval at 27 months of follow-up. Experimental studies support clinical experiences indicating it is feasible to surgically approach the membranous labyrinth of the cochlea without damaging its hearing function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huttenbrink KB (1991) Cochlear damage caused by middle ear surgeries. Laryngorhinootologie 70:66–71

    PubMed  CAS  Google Scholar 

  2. Juiz JM, Rueda J, Merchan JA (1988) Reversible damage to the nerve fibres in the organ of Corti after surgical opening of the cochlea in the rat. Acta Otolaryngol 106:29–33

    Article  PubMed  CAS  Google Scholar 

  3. Pérez N, Cervera-Paz J, Quesada J, García-Tapia R (1998) Dissimilarities in auditory and vestibular function in Menière’s disease. In: Ars B (ed) Inner ear partition. Kugler Publications. The Hague, Netherlands, pp 51–65

    Google Scholar 

  4. Cervera-Paz FJ, Linthicum F, Manrique MJ, Perez N (2004) Morphometry of the human cochlear wall and implications for cochlear surgery. Acta Otolaryngol 124:1124–1130

    Article  PubMed  Google Scholar 

  5. Hodges AV, Schloffman J, Balkany T (1997) Conservation of residual hearing with cochlear implantation. Am J Otol 18(2):179–183

    PubMed  CAS  Google Scholar 

  6. Shin YJ, Deguine O, Laborde ML, Fraysse B (1997) Conservation of l’audition residuelle apres implantation cochleaire. Rev Laryngol Otol Rhinol (Bord) 118(4):233–238

    CAS  Google Scholar 

  7. Richter Aschendorff A, Lohnstein P, Husstedt H, Nagursky H, Laszig R (2001) The nucleus contour electrode array: a radiological and histological study. Laryngoscope 111:508–514

    Article  PubMed  CAS  Google Scholar 

  8. Boleas-Aguirre MS, Perez N, Cervera-Paz FJ, Manrique MJ (2005) Efecto acústico inmediato de la fístula coclear en cobaya. Acta Otorrinolaringol Esp 56:233–239

    PubMed  CAS  Google Scholar 

  9. Manrique MJ, Savall J, Cervera-Paz FJ, Rey J, Der C, Echeverría M, Ares M (2007) Atraumatic surgical approach to the cochlea with a micromanipualtor. Acta Otolaryngol 127:122–131

    Article  PubMed  Google Scholar 

  10. Shera CA, Bergerin C, Kalluri R, McLaughlin M, Mechelet P, Van der Heijden M, Joris P (2011) Otoacustic estimates of cochlear tuning: testing predictions in macaque. AIP Conf Proc doi:10.1063/1.3658099

  11. Panadero A, Sainz-Sapena N, Cervera-Paz FJ, Manrique MJ (2000) General intubation anesthesia in primates for experimental otoneurologic surgery. Rev Med Univ Navarra 44(4):128

    Google Scholar 

  12. Alegre M, Gurtubay IG, Iriarte J, Ciordia E, Manrique M, Artieda J (2001) Brainstem auditory evoked potentials (BAEPs) in the cynomolgus macaque monkey. Hear Res 151:115–120

    Article  PubMed  CAS  Google Scholar 

  13. Lonsbury-Martin BL, McCoy MF, Martin GK (1993) The clinical testing of distortion product otoacustic emissions. Ear Hear 14:11–22

    Article  PubMed  CAS  Google Scholar 

  14. Wysocki J (2009) Topographical anatomy and morphometry of the temporal bone of the macaque. Folia Morhphol 68(1):13–22

    CAS  Google Scholar 

  15. Hawkins JE, Johnsson LG, Stebbins WC, Moody DB, Coombs SL (1976) Hearing loss and cochlear pathology in monkeys after noise exposure. Acta Otolaryngol 81:337–343

    Article  PubMed  Google Scholar 

  16. Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182

    Article  PubMed  CAS  Google Scholar 

  17. Park JY, Clark WW, Coticchia JM, Esselman GH, Fredrickson JM (1995) Distortion product otoacustic emissions in the rhesus (Macaca mulatta) monkey ears: normative findings. Hear Res 86/1,2:147–162

    Article  Google Scholar 

  18. Martin GK, Lonsbury-Martin BL, Probst R, Coats AC (1988) Spontaneous otoacoustic emissions in a nonhuman primate I: basic features and relations to other emissions. Hear Res 33:49–68

    Article  PubMed  CAS  Google Scholar 

  19. Lonsbury-Martin BL, Whitehead ML, Martin GK (1993) Distortion-product otoacustic emissions in normal and impaired ears: insight into generation processes. Prog Brain Res 97:77–90

    Article  PubMed  CAS  Google Scholar 

  20. Moody DB, Stebbins WC, Hawkins JE, Johnsson LG (1978) Hearing loss and cochlear pathology in the monkey (macaca) following exposure to high levels of noise. Arch Oto-Rhino-Laryng 220:47–72

    Article  CAS  Google Scholar 

  21. Stebbins WC, Pearson RD, Moody DB (1970) Hearing in the monkey (macaca): absolute and differential sensitivity. J Acoust Soc Am 47(1A):67

    Article  Google Scholar 

  22. Pau H, Just T, Bornitz M, Lasurashvilli N, Zahnert T (2007) Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation. Laryngoscope 117:535–540

    Article  PubMed  Google Scholar 

  23. Aschendorff A, Kromeier J, Klenzner T, Laszig R (2007) Quality control after insertion of the nucleus contour advance electrode in adults. Ear Hear 28(2):75–79

    Article  Google Scholar 

  24. Staecher H, Jolly C, Garnham C (2010) Cochlear implantation: an opportunity for drug development. Drug Discov Today 15:314–321

    Article  Google Scholar 

  25. Takumida M, Anniko M (2005) Radical scavengers: a remedy for presbyacusis. A pilot study. Acta Oto-Laryngologica 125:1290–1295

    Article  PubMed  CAS  Google Scholar 

  26. Parker M, Corliss D, Gray B, Anderson J, Bobbin R, Snyder E, Cotanche D (2007) Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 232:29–43

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Navarra. The authors would like to acknowledge the excellent specimen preparation of Maria Antonia, Yolanda y Mercedes, Technicians of the ENT Lab at the University of Navarra Medical School.

Conflict of interests

The authors declare that they do not have any conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Manrique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manrique, R., Picciafuoco, S.E., Cervera-Paz, F.J. et al. Promontorial cochleostomy in nonhuman primates. Is it atraumatic?. Eur Arch Otorhinolaryngol 270, 45–52 (2013). https://doi.org/10.1007/s00405-011-1909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-011-1909-z

Keywords

Navigation