Skip to main content

Advertisement

Log in

Programmed death-ligand 1, 2 expressions are decreased in the psoriatic epidermis

Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Psoriatic keratinocytes are one of the key components that amplify and maintain chronic inflammation. We hypothesized that lack of proper regulatory functions of keratinocytes can be responsible for chronic inflammation in psoriasis. Programmed death-ligands (PD-L) 1, 2 are expressed on keratinocytes, and expressions by nonlymphoid cells are important for mediating peripheral T cell tolerance. In our study, we investigated whether PD-L1, 2 expressions are altered in keratinocytes of psoriatic epidermis compared to normal epidermis. Epidermis was separated and analyzed for PD-L1, 2 expressions in mRNA and protein levels. Immunohistochemical stainings were done in skin biopsy samples from psoriasis, normal skin, allergic contact dermatitis (ACD), pityriasis rosea (PR) and lichen planus (LP). Expressions of PD-L1, 2 mRNA levels were significantly decreased in psoriatic epidermis compared to normal epidermis. In protein levels, PD-L1 expression was significantly decreased in psoriatic epidermis. However, PD-L2 expression was not detected in both normal and psoriatic epidermis. Immunohistochemical stainings revealed significantly less PD-L1 expression in psoriatic epidermis compared to normal epidermis. Even compared to other cutaneous inflammatory diseases, psoriatic epidermis showed less expression than ACD, PR and LP. PD-L2 expression was minimally detected in normal epidermis and not in psoriatic epidermis, but its expression was increased in ACD, PR and LP. In conclusion, we demonstrated that PD-L1, 2 are decreased in psoriatic epidermis in mRNA and protein levels. In addition, we showed that their expression was significantly lower than other inflammatory skin diseases. We suggest that decreased expression of PD-L1, 2 on psoriatic epidermis can contribute to its chronic unregulated inflammatory characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NK:

Natural killer

DC:

Dendritic cells

IL:

Interleukin

IFN:

Interferon

TNF:

Tumor necrosis factor

AMP:

Antimicrobial peptide

hCAP:

Human cationic antimicrobial protein

pDC:

Plasmacytoid dendritic cell

TLR:

Toll-like receptor

PD-1:

Programmed death-1

PD-L1, 2:

Programmed death-ligand 1,2

APC:

Antigen presenting cell

PVDF:

Polyvinylidene difluoride

ACD:

Allergic contact dermatitis

LP:

Lichen planus

References

  1. Ainsworth C (2012) Immunology: a many layered thing. Nature 492:S52–S54

    Article  CAS  PubMed  Google Scholar 

  2. Bovenschen HJ, van Vlijmen-Willems IM, van de Kerkhof PC, van Erp PE (2006) Identification of lesional CD4+ CD25+ Foxp3+ regulatory T cells in Psoriasis. Dermatology 213:111–117

    Article  CAS  PubMed  Google Scholar 

  3. Cao Y, Zhang L, Kamimura Y, Ritprajak P, Hashiguchi M, Hirose S, Azuma M (2011) B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res 71:1235–1243

    Article  CAS  PubMed  Google Scholar 

  4. Cao Y, Zhang L, Ritprajak P, Tsushima F, Youngnak-Piboonratanakit P, Kamimura Y, Hashiguchi M, Azuma M (2011) Immunoregulatory molecule B7-H1 (CD274) contributes to skin carcinogenesis. Cancer Res 71:4737–4741

    Article  CAS  PubMed  Google Scholar 

  5. Cetinozman F, Jansen PM, Willemze R (2014) Expression of programmed death-1 in skin biopsies of benign inflammatory vs. lymphomatous erythroderma. Br J Dermatol 171:499–504

    Article  CAS  PubMed  Google Scholar 

  6. Chu CC, Di Meglio P, Nestle FO (2011) Harnessing dendritic cells in inflammatory skin diseases. Semin Immunol 23:28–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Crow JM (2012) Psoriasis uncovered. Nature 492:S50–S51

    Article  PubMed  Google Scholar 

  8. Du GH, Qin XP, Li Q, Zhou YM, Shen XM, Tang GY (2011) The high expression level of programmed death-1 ligand 2 in oral lichen planus and the possible costimulatory effect on human T cells. J Oral Pathol Med 40:525–532

    Article  CAS  PubMed  Google Scholar 

  9. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fujimura T, Ring S, Umansky V, Mahnke K, Enk AH (2012) Regulatory T cells stimulate B7-H1 expression in myeloid-derived suppressor cells in ret melanomas. J Invest Dermatol 132:1239–1246

    Article  CAS  PubMed  Google Scholar 

  11. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206:1983–1994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gilliet M, Lande R (2008) Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr Opin Immunol 20:401–407

    Article  CAS  PubMed  Google Scholar 

  13. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  14. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kim TG, Kim DS, Kim HP, Lee MG (2014) The pathophysiological role of dendritic cell subsets in psoriasis. BMB Rep 47:60–68

    Article  PubMed Central  PubMed  Google Scholar 

  16. Koehn BH, Ford ML, Ferrer IR, Borom K, Gangappa S, Kirk AD, Larsen CP (2008) PD-1-dependent mechanisms maintain peripheral tolerance of donor-reactive CD8+ T cells to transplanted tissue. J Immunol 181:5313–5322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schroder JM, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569

    Article  CAS  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  19. Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG (2013) The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol 34:174–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lowes MA, Suarez-Farinas M, Krueger JG (2014) Immunology of psoriasis. Annu Rev Immunol 32:227–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509

    Article  CAS  PubMed  Google Scholar 

  22. Okiyama N, Katz SI (2014) Programmed cell death 1 (PD-1) regulates the effector function of CD8 T cells via PD-L1 expressed on target keratinocytes. J Autoimmun 53:1–9

    Article  CAS  PubMed  Google Scholar 

  23. Ritprajak P, Hashiguchi M, Tsushima F, Chalermsarp N, Azuma M (2010) Keratinocyte-associated B7-H1 directly regulates cutaneous effector CD8+ T cell responses. J Immunol 184:4918–4925

    Article  CAS  PubMed  Google Scholar 

  24. Shehata IH, Elghandour TM (2007) A possible pathogenic role of CD4+ CD25+ T-regulatory cells in psoriasis. Egypt J Immunol 14:21–31

    PubMed  Google Scholar 

  25. Soler DC, Sugiyama H, Young AB, Massari JV, McCormick TS, Cooper KD (2013) Psoriasis patients exhibit impairment of the high potency CCR5(+) T regulatory cell subset. Clin Immunol 149:111–118

    Article  CAS  PubMed  Google Scholar 

  26. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, McCormick TS, Cooper KD (2005) Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 174:164–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Youngnak-Piboonratanakit P, Tsushima F, Otsuki N, Igarashi H, Machida U, Iwai H, Takahashi Y, Omura K, Yokozeki H, Azuma M (2004) The expression of B7-H1 on keratinocytes in chronic inflammatory mucocutaneous disease and its regulatory role. Immunol Lett 94:215–222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported through KSP Psoriasis Academic Award (research proposal 2013) operated by the Korean Society for Psoriasis (MGL). This study was supported by a faculty research grant of Yonsei University College of Medicine for (6-2014-0046) (DSK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Geol Lee.

Ethics declarations

The authors have declared that no conflict of interest exists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.S., Je, J.H., Kim, S.H. et al. Programmed death-ligand 1, 2 expressions are decreased in the psoriatic epidermis. Arch Dermatol Res 307, 531–538 (2015). https://doi.org/10.1007/s00403-015-1588-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-015-1588-5

Keywords

Navigation