Skip to main content

Advertisement

Log in

Immunohistochemical evidence of stress and inflammatory markers in mouse models of cutaneous leishmaniosis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Leishmanioses are chronic parasitic diseases and host responses are associated with pro- or anti-inflammatory cytokines involved, respectively, in the control or exacerbation of infection. The relevance of other inflammatory mediators and stress markers has not been widely studied and there is a need to search for biomarkers to leishmaniasis. In this work, the stress and inflammatory molecules p38 mitogen-activated protein kinase, cyclooxygenase-2, migration inhibitory factor, macrophage inflammatory protein 2, heat shock protein 70 kDa, vascular endothelial factor (VEGF), hypoxia-inducible factors (HIF-1α and HIF-2α), heme oxygenase and galectin-3 expression were assessed immunohistochemically in self-controlled lesions in C57BL/6 mice and severe lesions in Balb/c mice infected with Leishmania amazonensis. The results indicated that the majority of molecules were expressed in the cutaneous lesions of both C57BL/6 and Balb/c mice during various phases of infection, suggesting no obvious correlation between the stress and inflammatory molecule expression and the control/exacerbation of leishmanial lesions. However, the cytokine VEGF was only detected in C57BL/6 footpad lesions and small lesions in Balb/c mice treated with antimonial pentavalent. These findings suggest that VEGF expression could be a predictive factor for murine leishmanial control, a hypothesis that should be tested in human leishmaniosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdou AG, Maraee AH, Reyad W (2013) Immunohistochemical expression of heat shock protein 70 in vitiligo. Ann Diagn Pathol 17:245–249

    Article  PubMed  Google Scholar 

  2. Abe R, Shimizu T, Ohkawara A, Nishihira J (2000) Enhancement of macrophage migration inhibitory factor (MIF) expression in injured epidermis and cultured fibroblasts. Biochim Biophys Acta 1500:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Alexander J, Brombacher F (2012) T helper1/t helper2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant? Front Immunol 3:80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Andrade BB, Barral-Netto M (2011) Biomarkers for susceptibility to infection and disease severity in human malaria. Mem Inst Oswaldo Cruz 106(Suppl 1):70–78

    Article  PubMed  Google Scholar 

  5. Andrade ZA, Reed SG, Roters SB et al (1984) Immunopathology of experimental cutaneous leishmaniasis. Am J Pathol 114:137–148

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Arany Z, Foo SY, Ma Y et al (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012

    Article  CAS  PubMed  Google Scholar 

  7. Araujo AP, Arrais-Silva WW, Giorgio S (2012) Infection by Leishmania amazonensis in mice: a potential model for chronic hypoxia. Acta Histochem 114:797–804

    Article  CAS  PubMed  Google Scholar 

  8. Araujo AP, Frezza TF, Allegretti SM, Giorgio S (2010) Hypoxia, hypoxia-inducible factor-1α and vascular endothelial growth factor in a murine model of Schistosoma mansoni infection. Exp Mol Pathol 89:327–333

    Article  CAS  PubMed  Google Scholar 

  9. Arrais-Silva WW, Paffaro VA Jr, Yamada AT, Giorgio S (2005) Expression of hypoxia-inducible factor-1alpha in the cutaneous lesions of BALB/c mice infected with Leishmania amazonensis. Exp Mol Pathol 78:49–54

    Article  CAS  PubMed  Google Scholar 

  10. Arrais-Silva WW, Pinto EF, Rossi-Bergmann B, Giorgio S (2006) Hyperbaric oxygen therapy reduces the size of Leishmania amazonensis-induced soft tissue lesions in mice. Acta Trop 98:130–136

    Article  CAS  PubMed  Google Scholar 

  11. Attuwaybi BO, Kozar RA, Moore-Olufemi SD, Sato N, Hassoun HT, Weisbrodt NW, Moore FA (2004) Heme oxygenase-1 induction by hemin protects against gut ischemia/reperfusion injury. J Surg Res 118:53–57

    Article  CAS  PubMed  Google Scholar 

  12. Avihingsanon Y, Benjachat T, Tassanarong A et al (2009) Decreased renal expression of vascular endothelial growth factor in lupus nephritis is associated with worse prognosis. Kidney Int 75:1340–1348

    Article  CAS  PubMed  Google Scholar 

  13. Ayres DC, Fedele TA, Marcucci MC, Giorgio S (2011) Potential utility of hyperbaric oxygen therapy and propolis in enhancing the leishmanicidal activity of glucantime. Rev Inst Med Trop São Paulo 53:329–334

    Article  PubMed  Google Scholar 

  14. Barbiéri CL, Giorgio S, Merjan AJ, Figueiredo EN (1993) Glycosphingolipid antigens of Leishmania (Leishmania) amazonensis amastigotes identified by use of a monoclonal antibody. Infect Immun 61:2131–2137

    PubMed Central  PubMed  Google Scholar 

  15. Böhm C, Hayer S, Kilian A et al (2009) The alpha-isoform of p38 MAPK specifically regulates arthritic bone loss. J Immunol 183:5938–5947

    Article  PubMed  Google Scholar 

  16. Brar VS, Sharma RK, Murthy RK, Chalam KV (2010) Bevacizumab neutralizes the protective effect of vascular endothelial growth factor on retinal ganglion cells. Mol Vis 16:1848–1855

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Bucala R, Donnelly SC (2007) Macrophage migration inhibitory factor: a probable link between inflammation and cancer. Immunity 26:281–285

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  19. Clauss M, Gerlach M, Gerlach H, Brett J et al (1990) Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172:1535–1545

    Article  CAS  PubMed  Google Scholar 

  20. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429:403–417

    Article  CAS  PubMed  Google Scholar 

  21. Cuevas I, Boudreau N (2009) Managing tumor angiogenesis: lessons from VEGF-resistant tumors and wounds. Adv Cancer Res 103:25–42

    Article  CAS  PubMed  Google Scholar 

  22. Cuzzocrea S, Mazzon E, Bevilaqua C et al (2000) Cloricromene, a coumarine derivative, protects against collagen-induced arthritis in Lewis rats. Br J Pharmacol 131:1399–1407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Degrossoli A, Bosetto MC, Lima CB, Giorgio S (2007) Expression of hypoxia-inducible factor 1alpha in mononuclear phagocytes infected with Leishmania amazonensis. Immunol Lett 114:119–125

    Article  CAS  PubMed  Google Scholar 

  24. Déry MA, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37:535–540

    Article  PubMed  Google Scholar 

  25. Deshane J, Wright M, Agarwal A (2005) Heme oxygenase-1 expression in disease states. Acta Biochim Pol 52:273–284

    CAS  PubMed  Google Scholar 

  26. Feliers D (2009) Vascular endothelial growth factor as a prognostic marker of lupus nephritis. Kidney Int 75:1251–1253

    Article  CAS  PubMed  Google Scholar 

  27. Felizardo TC, Gaspar-Elsas MI, Lima GM, Abrahamsohn IA (2012) Lack of signaling by IL-4 or by IL-4/IL-13 has more attenuating effects on Leishmania amazonensis dorsal skin—than on footpad-infected mice. Exp Parasitol 130:48–57

    Article  CAS  PubMed  Google Scholar 

  28. Frézard F, Demicheli C, Ribeiro RR (2009) Pentavalent antimonials: new perspectives for old drugs. Molecules 14:2317–2336

    Article  PubMed  Google Scholar 

  29. Gao P, Simpson JL, Zhang J, Gibson PG (2013) Galectin-3: its role in asthma and potential as an anti-inflammatory target. Respir Res 14:136

    Article  PubMed Central  PubMed  Google Scholar 

  30. Giorgio S, Linares E, Ischiropoulos H et al (1998) In vivo formation of electron paramagnetic resonance-detectable nitric oxide and of nitrotyrosine is not impaired during murine leishmaniasis. Infect Immun 66:807–814

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Gomes AC, Gomes-Filho JE, Oliveira SH (2010) Mineral trioxide aggregate stimulates macrophages and mast cells to release neutrophil chemotactic factors: role of IL-1beta, MIP-2 and LTB(4). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e135–e142

    Article  PubMed  Google Scholar 

  32. Junghae M, Raynes JG (2002) Activation of p38 mitogen-activated protein kinase attenuates Leishmania donovani infection in macrophages. Infect Immun 70:5026–5035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kip AE, Balasegaram M, Beijnen JH et al (2015) Systematic review of biomarkers to monitor therapeutic response in leishmaniasis. Antimicrob Agents Chemother 59:1–14

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kong YZ, Yu X, Tang JJ et al (2005) Macrophage migration inhibitory factor induces MMP-9 expression: implications for destabilization of human atherosclerotic plaques. Atherosclerosis 178:207–215

    Article  CAS  PubMed  Google Scholar 

  35. Lee BL, Kim WH, Jung J et al (2008) A hypoxia-independent up-regulation of hypoxia-inducible factor-1 by AKT contributes to angiogenesis in human gastric cancer. Carcinogenesis 29:44–51

    Article  CAS  PubMed  Google Scholar 

  36. Liu D, Uzonna JE (2012) The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front Cell Infect Microbiol 2:83

    PubMed Central  PubMed  Google Scholar 

  37. Luo Y, Fischer FR, Hancock WW, Dorf ME (2000) Macrophage inflammatory protein-2 and KC induce chemokine production by mouse astrocytes. J Immunol 165:4015–4023

    Article  CAS  PubMed  Google Scholar 

  38. Luz NF, Andrade BB, Feijó DF et al (2012) Heme oxygenase-1 promotes the persistence of Leishmania chagasi infection. J Immunol 188:4460–4467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Matte C, Olivier M (2002) Leishmania-induced cellular recruitment during the early inflammatory response: modulation of proinflammatory mediators. J Infect Dis 185:673–681

    Article  CAS  PubMed  Google Scholar 

  40. McElrath MJ, Kaplan G, Nusrat A et al (1987) Cutaneous leishmaniasis. The defect in T cell influx in BALB/c mice. J Exp Med 165:546–559

    Article  CAS  PubMed  Google Scholar 

  41. Miyake M, Fujimoto K, Anai S, Ohnishi S, Kuwada M, Nakai Y, Inoue T, Matsumura Y, Tomioka A, Ikeda T, Tanaka N, Hirao Y (2011) Heme oxygenase-1 promotes angiogenesis in urothelial carcinoma of the urinary bladder. Oncol Rep 25:653–660

    Article  CAS  PubMed  Google Scholar 

  42. Mougneau E, Bihl F, Glaichenhaus N (2011) Cell biology and immunology of Leishmania. Immunol Rev 240:286–296

    Article  CAS  PubMed  Google Scholar 

  43. Novell A, Martínez-Alonso M, Mira M et al (2014) Prognostic value of c-FLIPL/s, HIF-1α, and NF-κβ in stage II and III rectal cancer. Virchows Arch 464:645–654

    Article  CAS  PubMed  Google Scholar 

  44. Nylén S, Akuffo H (2009) Tracing immunity to human leishmaniasis. Future Microbiol 4:241–254

    Article  PubMed  Google Scholar 

  45. Nylén S, Gautam S (2010) Immunological perspectives of leishmaniasis. J Glob Infect Dis 2:135–146

    Article  PubMed Central  PubMed  Google Scholar 

  46. Ohtsuka Y, Lee J, Stamm DS, Sanderson IR (2001) MIP-2 secreted by epithelial cells increases neutrophil and lymphocyte recruitment in the mouse intestine. Gut 49:526–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Pereira BA, Alves CR (2008) Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis. Vet Parasitol 158:239–255

    Article  CAS  PubMed  Google Scholar 

  48. Pham NK, Mouriz J, Kima PE (2005) Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation. Infect Immun 73:8322–8333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Pinheiro RO, Rossi-Bergmann B (2007) Interferon-gamma is required for the late but not early control of Leishmania amazonensis infection in C57Bl/6 mice. Mem Inst Oswaldo Cruz 102:79–82

    Article  CAS  PubMed  Google Scholar 

  50. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  51. Raleigh JA, Chou SC, Arteel GE et al (1999) Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 151:580–589

    Article  CAS  PubMed  Google Scholar 

  52. Ramanathan M, Giladi A, Leibovich SJ (2003) Regulation of vascular endothelial growth factor gene expression in murine macrophages by nitric oxide and hypoxia. Exp Biol Med (Maywood) 228:697–705

    CAS  Google Scholar 

  53. Ramon S, Woeller CF, Phipps RP (2013) The influence of Cox-2 and bioactive lipids on hematological cancers. Curr Angiogenes 2:135–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ricciardolo FL, Sabatini F, Sorbello V et al (2013) Expression of vascular remodelling markers in relation to bradykinin receptors in asthma and COPD. Thorax 68:803–811

    Article  PubMed  Google Scholar 

  55. Richard DE, Berra E, Pouyssegur J (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 275:26765–26771

    CAS  PubMed  Google Scholar 

  56. Rosas LE, Keiser T, Barbi J et al (2005) Genetic background influences immune responses and disease outcome of cutaneous L. mexicana infection in mice. Int Immunol 17:1347–1357

    Article  CAS  PubMed  Google Scholar 

  57. Sajjadi AY, Mitra K, Grace M (2013) Expression of heat shock proteins 70 and 47 in tissues following short-pulse laser irradiation: assessment of thermal damage and healing. Med Eng Phys 35:1406–1414

    Article  PubMed  Google Scholar 

  58. Santos-Oliveira JR, Regis EG, Leal CR et al (2011) Evidence that lipopolisaccharide may contribute to the cytokine storm and cellular activation in patients with visceral leishmaniasis. PLoS Negl Trop Dis 5:e1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Shweash M, McGachy H, Schroeder J et al (2011) Leishmania mexicana promastigotes inhibit macrophage IL-12 production via TLR-4 dependent COX-2, iNOS and arginase-1 expression. Mol Immunol 48:1800–1808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sisto M, Lisi S, Ingravallo G et al (2014) Neovascularization is prominent in the chronic inflammatory lesions of Sjögren’s syndrome. Int J Exp Pathol 95:131–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Szekanecz Z, Besenyei T, Szentpétery A, Koch AE (2010) Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol 22:299–306

    Article  CAS  PubMed  Google Scholar 

  62. Tomasello G, Sciumé C, Rappa F et al (2011) Hsp10, Hsp70, and Hsp90 immunohistochemical levels change in ulcerative colitis after therapy. Eur J Histochem 55:e38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Trautinger F, Kindås-Mügge I, Knobler RM, Hönigsmann H (1996) Stress proteins in the cellular response to ultraviolet radiation. J Photochem Photobiol, B 35:141–148

    Article  CAS  Google Scholar 

  64. Uddin MJ, Crews BC, Huda I et al (2014) Trifluoromethyl fluorocoxib a detects cyclooxygenase-2 expression in inflammatory tissues and human tumor xenografts. ACS Med Chem Lett 5:446–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Vasta GR (2012) Galectins as pattern recognition receptors: structure, function, and evolution. Adv Exp Med Biol 946:21–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Zinkernagel AS, Johnson RS, Nizet V (2007) Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med (Berl) 85:1339–1346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundacão de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Conflict of interest

The authors have no conflicts of interest concerning the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Giorgio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, A.P., Giorgio, S. Immunohistochemical evidence of stress and inflammatory markers in mouse models of cutaneous leishmaniosis. Arch Dermatol Res 307, 671–682 (2015). https://doi.org/10.1007/s00403-015-1564-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-015-1564-0

Keywords

Navigation