Skip to main content

Advertisement

Log in

Cyclic mechanical strain induces TGFβ1-signalling in dermal fibroblasts embedded in a 3D collagen lattice

  • Concise Communication
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Many tissues are constantly exposed to mechanical stress, e.g. shear stress in vascular endothelium, compression forces in cartilage or tensile strain in the skin. Dermal fibroblasts can differentiate into contractile myofibroblasts in a process requiring the presence of TGFβ1 in addition to mechanical load. We aimed at investigating the effect of cyclic mechanical strain on dermal fibroblasts grown in a three-dimensional environment. Therefore, murine dermal fibroblasts were cultured in collagen gels and subjected to cyclic tension at a frequency of 0.1 Hz (6 cycles/min) with a maximal increase in surface area of 10 % for 24 h. This treatment resulted in a significant increase in active TGFβ1 levels, leaving the amount of total TGFβ1 unaffected. TGFβ1 activation led to pSMAD2-mediated transcriptional elevation of downstream mediators, such as CTGF, and an auto-induction of TGFβ1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff DJ, Rifkin DB (1994) An assay for transforming growth factor-beta using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal Biochem 216(2):276–284

    Article  CAS  PubMed  Google Scholar 

  2. Abraham DJ, Eckes B, Rajkumar V, Krieg T (2007) New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 9(2):136–143

    Article  CAS  PubMed  Google Scholar 

  3. Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76(3):1274–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Blaauboer ME, Smit TH, Hanemaaijer R, Stoop R, Everts V (2011) Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts. Biochem Biophys Res Commun 404(1):23–27

    Article  CAS  PubMed  Google Scholar 

  5. Blumbach K, Zweers MC, Brunner G, Peters AS, Schmitz M, Schulz JN, Schild A, Denton CP, Sakai T, Fassler R, Krieg T, Eckes B (2010) Defective granulation tissue formation in mice with specific ablation of integrin-linked kinase in fibroblasts—role of TGFbeta1 levels and RhoA activity. J Cell Sci 123(Pt 22):3872–3883

    Article  CAS  PubMed  Google Scholar 

  6. Brown RA (2013) In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models? Exp Cell Res 319(16):2460–2469

    Article  CAS  PubMed  Google Scholar 

  7. Brown RA, Prajapati R, McGrouther DA, Yannas IV, Eastwood M (1998) Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J Cell Physiol 175(3):323–332

    Article  CAS  PubMed  Google Scholar 

  8. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chaqour B, Goppelt-Struebe M (2006) Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J 273(16):3639–3649

    Article  CAS  PubMed  Google Scholar 

  10. Chiquet M (1999) Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol 18(5):417–426

    Article  CAS  PubMed  Google Scholar 

  11. Fisher GJ, Varani J, Voorhees JJ (2008) Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol 144(5):666–672

    Article  PubMed Central  PubMed  Google Scholar 

  12. Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360(19):1989–2003

    Article  CAS  PubMed  Google Scholar 

  13. Galie PA, Russell MW, Westfall MV, Stegemann JP (2012) Interstitial fluid flow and cyclic strain differentially regulate cardiac fibroblast activation via AT1R and TGF-beta1. Exp Cell Res 318(1):75–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Grinnell F, Petroll WM (2010) Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol 26:335–361

    Article  CAS  PubMed  Google Scholar 

  15. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12(9):2730–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hinz B, Gabbiani G (2010) Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biol Rep 2:78

  17. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323

    Article  CAS  PubMed  Google Scholar 

  18. Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A (2001) CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem 276(14):10594–10601

    Article  CAS  PubMed  Google Scholar 

  19. Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Fujimoto M, Grotendorst GR, Takehara K (1996) Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106(4):729–733

    Article  CAS  PubMed  Google Scholar 

  20. Kanazawa Y, Nomura J, Yoshimoto S, Suzuki T, Kita K, Suzuki N, Ichinose M (2009) Cyclical cell stretching of skin-derived fibroblasts downregulates connective tissue growth factor (CTGF) production. Connect Tissue Res 50(5):323–329

    Article  CAS  PubMed  Google Scholar 

  21. Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B (2001) Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype. J Biol Chem 276(39):36575–36585

    Article  CAS  PubMed  Google Scholar 

  22. Leask A, Parapuram SK, Shi-Wen X, Abraham DJ (2009) Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J Cell Commun Signal 3(2):89–94

    Article  PubMed Central  PubMed  Google Scholar 

  23. Leung LY, Tian D, Brangwynne CP, Weitz DA, Tschumperlin DJ (2007) A new microrheometric approach reveals individual and cooperative roles for TGF-beta1 and IL-1beta in fibroblast-mediated stiffening of collagen gels. Faseb J 21(9):2064–2073

    Article  CAS  PubMed  Google Scholar 

  24. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3):319–328

    Article  CAS  PubMed  Google Scholar 

  26. Munger JS, Sheppard D (2011) Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol 3(11):a005017

    Article  PubMed Central  PubMed  Google Scholar 

  27. Pedersen JA, Swartz MA (2005) Mechanobiology in the third dimension. Ann Biomed Eng 33(11):1469–1490

    Article  PubMed  Google Scholar 

  28. Peters AS, Brunner G, Blumbach K, Abraham DJ, Krieg T, Eckes B (2012) Cyclic mechanical stress downregulates endothelin-1 and its responsive genes independently of TGFbeta1 in dermal fibroblasts. Exp Dermatol 21(10):765–770

    CAS  PubMed  Google Scholar 

  29. Reed RK, Rubin K (2010) Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res 87(2):211–217

    Article  CAS  PubMed  Google Scholar 

  30. Riser BL, Cortes P, Heilig C, Grondin J, Ladson-Wofford S, Patterson D, Narins RG (1996) Cyclic stretching force selectively up-regulates transforming growth factor-beta isoforms in cultured rat mesangial cells. Am J Pathol 148(6):1915–1923

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Saharinen J, Taipale J, Keski-Oja J (1996) Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J 15(2):245–253

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Sarasa-Renedo A, Tunc-Civelek V, Chiquet M (2006) Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain. Exp Cell Res 312(8):1361–1370

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12):a005066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA (2011) Latent TGF-beta structure and activation. Nature 474(7351):343–349

    Article  CAS  PubMed  Google Scholar 

  35. Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313(5787):629–633

    Article  CAS  PubMed  Google Scholar 

  36. Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, Davis-Street JE, Oganov V, Shackelford LC (2005) Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J Bone Miner Res 20(2):208–218

    Article  CAS  PubMed  Google Scholar 

  37. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  CAS  PubMed  Google Scholar 

  38. Tomasek JJ, Hay ED (1984) Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J Cell Biol 99(2):536–549

    Article  CAS  PubMed  Google Scholar 

  39. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117(3):557–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wall ME, Banes AJ (2005) Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact 5(1):70–84

    CAS  PubMed  Google Scholar 

  41. Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polym Sci 134:165–234

    Article  CAS  Google Scholar 

  42. Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wong M, Siegrist M, Goodwin K (2003) Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33(4):685–693

    Article  CAS  PubMed  Google Scholar 

  44. Yamashiro T, Fukunaga T, Kobashi N, Kamioka H, Nakanishi T, Takigawa M, Takano-Yamamoto T (2001) Mechanical stimulation induces CTGF expression in rat osteocytes. J Dent Res 80(2):461–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gabriele Scherr for excellent technical assistance. This work was supported by Deutsche Forschungsgemeinschaft through SFB 829 (to BE and TK) and KR 558/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas S. Peters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, A.S., Brunner, G., Krieg, T. et al. Cyclic mechanical strain induces TGFβ1-signalling in dermal fibroblasts embedded in a 3D collagen lattice. Arch Dermatol Res 307, 191–197 (2015). https://doi.org/10.1007/s00403-014-1514-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-014-1514-2

Keywords

Navigation