Skip to main content

Advertisement

Log in

Annexin A2 participates in human skin keloid formation by inhibiting fibroblast proliferation

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Abnormal scarring results from the expression and composition of extracellular matrix molecules. The transcription and translation of collagens I and III, fibronectin, laminin, periostin, and tenascin are all increased in raised dermal scar tissue. However, human keloid development is not fully defined. In this study, we identified proteins expressed differentially between normal skin and keloid scar tissues and examined their function in keloid formation using fibroblasts. Skin specimens from normal volunteers and patients with keloids were obtained by skin biopsy. Whole proteins were isolated by two-dimensional electrophoresis, and differentially expressed proteins were identified by matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry. Protein function was determined by proliferation assay using annexin A2-overexpressing keloid fibroblasts. The expression of 11 protein spots was altered by at least 1.5-fold in patients with keloids than in normal volunteers. Of these proteins, annexin A2, a pre-serum amyloid P component, serum albumin precursor, and tryptase-I, were down-regulated in keloid tissue compared to normal skin. Collagen alpha 1(V) chain precursor, collagen alpha 1(I) chain precursor, ferritin light subunit, alpha 1(III) collagen, 6-phosphogluconolactonase, and calponin 2 were up-regulated. Diminished expression of annexin A2 was confirmed by immunoblotting and immunohistochemistry. Treatment with the recombinant human epidermal growth factor increased proliferation of keloid fibroblasts, which was more inhibited in annexin A2-overexpressing fibroblasts than in non-transfected control cells. These results imply that annexin A2 may participate in keloid formation by inhibiting keloid fibroblast proliferation. Therefore, it is concluded that annexin A2 may be a valuable therapeutic target for keloid lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bagabir R, Syed F, Paus R, Bayat A (2012) Long-term organ culture of keloid disease tissue. Exp Dermatol 21(5):376–381

    Article  CAS  PubMed  Google Scholar 

  2. Bai Q, Li X, Wang X et al (2012) VEGF is involved in the increase of dermal microvascular permeability induced by tryptase. ISRN Dermatol 2012:941465

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bayat A, McGrouther DA (2005) Clinical management of skin scarring. Skinmed 4(3):165–173

    Article  PubMed  Google Scholar 

  4. Cesarman-Maus G, Rios-Luna NP, Deora AB et al (2006) Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome. Blood 107(11):4375–4382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dang C, Gottschling M, Manning K et al (2006) Identification of dysregulated genes in cutaneous squamous cell carcinoma. Oncol Rep 16(3):513–519

    CAS  PubMed  Google Scholar 

  6. Danninger C, Gimona M (2000) Live dynamics of GFP-calponin: isoform-specific modulation of the actin cytoskeleton and autoregulation by C-terminal sequences. J Cell Sci 113:3725–3736

    CAS  PubMed  Google Scholar 

  7. De Felice B, Garbi C, Wilson RR, Santoriello M, Nacca M (2011) Effect of selenocystine on gene expression profiles in human keloid fibroblasts. Genomics 97(5):265–276

    Article  PubMed  Google Scholar 

  8. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9(1):283–289

    Article  CAS  PubMed  Google Scholar 

  9. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6(6):449–461

    Article  CAS  PubMed  Google Scholar 

  10. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Halim AS, Emami A, Salahshourifar I, Kannan TP (2012) Keloid scarring: understanding the genetic basis, advances, and prospects. Arch Plast Surg 39(3):184–189

    Article  PubMed Central  PubMed  Google Scholar 

  12. Inui S, Shono F, Nakajima T, Hosokawa K, Itami S (2011) Identification and characterization of cartilage oligomeric matrix protein as a novel pathogenic factor in keloids. Am J Pathol 179(4):1951–1960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Javad F, Day PJ (2012) Protein profiling of keloidal scar tissue. Arch Dermatol Res 304(7):533–540

    Article  CAS  PubMed  Google Scholar 

  14. Kashiyama K, Mitsutake N, Matsuse M et al (2012) miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol 132(6):1597–1604

    Article  CAS  PubMed  Google Scholar 

  15. Keutzer JC, Hirschhorn RR (1990) The growth-regulated gene 1B6 is identified as the heavy chain of calpactin I. Exp Cell Res 188(1):153–159

    Article  CAS  PubMed  Google Scholar 

  16. Lee CK, Han JS, Won KJ et al (2009) Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. Proteomics 9(21):4851–4858

    Article  CAS  PubMed  Google Scholar 

  17. Ling Q, Jacovina AT, Deora A et al (2004) Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest 113(1):38–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Makino S, Mitsutake N, Nakashima M et al (2008) DHMEQ, a novel NF-kappaB inhibitor, suppresses growth and type I collagen accumulation in keloid fibroblasts. J Dermatol Sci 51(3):171–180

    Article  CAS  PubMed  Google Scholar 

  19. O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  20. Ogawa R (2010) The most current algorithms for the treatment and prevention of hypertrophic scars and keloids. Plast Reconstr Surg 125(2):557–568

    Article  CAS  PubMed  Google Scholar 

  21. Ong CT, Khoo YT, Mukhopadhyay A et al (2010) Comparative proteomic analysis between normal skin and keloid scar. Br J Dermatol 162(6):1302–1315

    Article  CAS  PubMed  Google Scholar 

  22. Russell SB, Trupin KM, Rodriguez-Eaton S, Russell JD, Trupin JS (1988) Reduced growth-factor requirement of keloid-derived fibroblasts may account for tumor growth. Proc Natl Acad Sci USA 85(2):587–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Saed GM, Ladin D, Olson J, Han X, Hou Z, Fivenson D (1998) Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand conformational polymorphism and DNA sequencing. Arch Dermatol 134(8):963–967

    Article  CAS  PubMed  Google Scholar 

  24. Sayah DN, Soo C, Shaw WW et al (1999) Downregulation of apoptosis-related genes in keloid tissues. J Surg Res 87(2):209–216

    Article  CAS  PubMed  Google Scholar 

  25. Seifert O, Bayat A, Geffers R et al (2008) Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen 16(2):254–265

    Article  PubMed  Google Scholar 

  26. Sharma MC, Sharma M (2007) The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr Pharm Des 13(35):3568–3575

    Article  CAS  PubMed  Google Scholar 

  27. Syed F, Ahmadi E, Iqbal SA, Singh S, McGrouther DA, Bayat A (2011) Fibroblasts from the growing margin of keloid scars produce higher levels of collagen I and III compared with intralesional and extralesional sites: clinical implications for lesional site-directed therapy. Br J Dermatol 164(1):83–96

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi K, Yoshimoto R, Fuchibe K et al (2000) Regulation of shortening velocity by calponin in intact contracting smooth muscles. Biochem Biophys Res Commun 279(1):150–157

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka A, Hatoko M, Tada H, Iioka H, Niitsuma K, Miyagawa S (2004) Expression of p53 family in scars. J Dermatol Sci 34(1):17–24

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka T, Akatsuka S, Ozeki M, Shirase T, Hiai H, Toyokuni S (2004) Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis. Oncogene 23(22):3980–3989

    Article  CAS  PubMed  Google Scholar 

  31. Tang B, Hu ZC, Zhu B et al (2011) Proteomic analysis between keloid and normal skin. Zhonghua Wai Ke Za Zhi 49(5):445–449

    PubMed  Google Scholar 

  32. Tuszynski GP, Sharma MR, Rothman VL, Sharma MC (2002) Angiostatin binds to tyrosine kinase substrate annexin II through the lysine-binding domain in endothelial cells. Microvasc Res 64(3):448–462

    Article  CAS  PubMed  Google Scholar 

  33. Varmeh S, Egia A, McGrouther D, Tahan SR, Bayat A, Pandolfi PP (2011) Cellular senescence as a possible mechanism for halting progression of keloid lesions. Genes Cancer 2(11):1061–1066

    Article  PubMed Central  PubMed  Google Scholar 

  34. Wang J, Yuan W, Li MD (2011) Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 44(3):269–286

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Chen G (2011) Current advances in the application of proteomics in apoptosis research. Sci China Life Sci 54(3):209–219

    Article  PubMed  Google Scholar 

  36. Wang XQ, Liu YK, Qing C, Lu SL (2009) A review of the effectiveness of antimitotic drug injections for hypertrophic scars and keloids. Ann Plast Surg 63(6):688–692

    Article  CAS  PubMed  Google Scholar 

  37. Witt E, Maliri A, McGrouther DA, Bayat A (2008) RAC activity in keloid disease: comparative analysis of fibroblasts from margin of keloid to its surrounding normal skin. Eplasty 8:e19

    PubMed Central  PubMed  Google Scholar 

  38. Won KJ, Lee P, Jung SH et al (2011) 3-morpholinosydnonimine participates in the attenuation of neointima formation via inhibition of annexin A2-mediated vascular smooth muscle cell migration. Proteomics 11(2):193–201

    Article  CAS  PubMed  Google Scholar 

  39. Wu B, Zhang F, Yu M et al (2012) Up-regulation of Anxa2 gene promotes proliferation and invasion of breast cancer MCF-7 cells. Cell Prolif 45(3):189–198

    Article  PubMed  Google Scholar 

  40. Zeng J, Yi B, Wang Z, Ning J, Wang X, Lu K (2013) Effect of annexin A2 on hepatopulmonary syndrome rat serum-induced proliferation of pulmonary arterial smooth muscle cells. Respir Physiol Neurobiol 185(2):332–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Korean Research Foundation grant funded by the Korean Government (KRF-2010-0006841).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bokyung Kim.

Additional information

S. H. Kim and S.-H. Jung contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Jung, SH., Chung, H. et al. Annexin A2 participates in human skin keloid formation by inhibiting fibroblast proliferation. Arch Dermatol Res 306, 347–357 (2014). https://doi.org/10.1007/s00403-014-1438-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-014-1438-x

Keywords

Navigation