Skip to main content

Advertisement

Log in

Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Transepidermal water loss (TEWL) is regarded as one of the most important parameters for characterizing skin barrier function but an agreed upon definition of what a “normal” TEWL is does not exist. In order to determine generalizable TEWL values for healthy adults, a systematic review and meta-analysis was conducted. The databases MEDLINE and EMBASE and publication lists were screened. After full-text appraisal of 398 studies, 231 studies were excluded due to unclear or insufficient reporting. 167 studies providing data about 50 skin areas were included in the final data synthesis. Pooled sample sizes ranged from n = 5 for the left cheek and the left lower back to a maximum of n = 2,838 for the right midvolar forearm area. The lowest TEWL of 2.3 (95 % CI 1.9–2.7) g/m2/h was calculated for the breast skin, the highest TEWL of 44.0 (39.8–48.2) g/m2/h for the axilla. TEWL in individuals being 65 years and above was consistently lower compared to the group of 18- to 64-year-old individuals. The quality of reporting TEWL in humans should be increased in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agner T (1992) Noninvasive measuring methods for the investigation of irritant patch test reactions. A study of patients with hand eczema, atopic dermatitis and controls. Acta Derm Venereol Suppl 173:1–26

    CAS  Google Scholar 

  2. Alikhan A, Wilhelm K-P, Alikhan FS, Maibach HI (2010) Transepidermal water loss and aging. In: Farage MA, Miller KW, Maibach HI (eds) Textbook of Aging Skin. Springer, Berlin, pp 695–703

    Chapter  Google Scholar 

  3. Baker H, Kligman AM (1967) Measurement of transepidermal water loss by electrical hygrometry. Instrumentation and responses to physical and chemical insults. Arch Dermatol 96(4):441–452

    Article  PubMed  CAS  Google Scholar 

  4. Barel AO, Clarys P (1995) Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: evaporimeter and Tewameter. Skin Pharmacol 8(4):186–195

    Article  PubMed  CAS  Google Scholar 

  5. Berardesca E, Fluhr JW (2010) Corneocyte size and cell renewal: effects of aging and sex hormones. In: Farage MA, Miller KW, Maibach HI (eds) Textbook of Aging Skin. Springer, Berlin, pp 271–275

    Google Scholar 

  6. Berardesca E, Maibach HI (1990) Transepidermal water loss and skin surface hydration in the non invasive assessment of stratum corneum function. Derm Beruf Umwelt 38(2):50–53

    PubMed  CAS  Google Scholar 

  7. Blaak J, Lüttje D, John SM, Schürer NY (2011) Irritability of the skin barrier: a comparison of chronologically aged and photo-aged skin in elderly and young adults. Eur Geriatr Med 2:208–211

    Article  Google Scholar 

  8. Bock M, Wulfhorst B, John SM (2007) Site variations in susceptibility to SLS. Contact Dermat 57(2):94–96. doi:10.1111/j.1600-0536.2007.01159.x

    Article  CAS  Google Scholar 

  9. Chilcott RP, Farrar R (2000) Biophysical measurements of human forearm skin in vivo: effects of site, gender, chirality and time. Skin Res Technol 6(2):64–69

    Article  PubMed  Google Scholar 

  10. Cohen JC, Hartman DG, Garofalo MJ, Basehoar A, Raynor B, Ashbrenner E, Akin FJ (2009) Comparison of closed chamber and open chamber evaporimetry. Skin Res Technol 15(1):51–54

    Article  PubMed  CAS  Google Scholar 

  11. De Paepe K, Houben E, Adam R, Wiesemann F, Rogiers V (2005) Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter((R)). Skin Res Technol 11(1):61–69

    Article  PubMed  Google Scholar 

  12. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  PubMed  CAS  Google Scholar 

  13. Dharmarajan TS (2008) Aging and the skin: the geriatrician’s perspective. In: Norman R (ed) Diagnosis of Aging Skin Diseases. Springer, London, pp 5–10

    Google Scholar 

  14. Elkeeb R, Hui X, Chan H, Tian L, Maibach HI (2010) Correlation of transepidermal water loss with skin barrier properties in vitro: comparison of three evaporimeters. Skin Res Technol 16(1):9–15

    Article  PubMed  Google Scholar 

  15. Elsner P, Fluhr JW, Gehring W, Kerscher MJ, Krutmann J, Lademann J, Makrantonaki E, Wilhelm KP, Zouboulis CC (2011) Anti-aging data and support claims—consensus statement. J Dtsch Dermatol Ges 9:S1–S32

    PubMed  Google Scholar 

  16. Farahmand S, Tien L, Hui X, Maibach HI (2009) Measuring transepidermal water loss: a comparative in vivo study of condenser-chamber, unventilated-chamber and open-chamber systems. Skin Res Technol 15(4):392–398

    Article  PubMed  Google Scholar 

  17. Firooz A, Sadr B, Babakoohi S, Sarraf-Yazdy M, Fanian F, Kazerouni-Timsar A, Nassiri-Kashani M, Naghizadeh MM, Dowlati Y (2012) Variation of biophysical parameters of the skin with age, gender, and body region. Sci World J 2012:386936. doi:10.1100/2012/386936

    Article  Google Scholar 

  18. Fluhr JW, Feingold KR, Elias PM (2006) Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol 15(7):483–492

    Article  PubMed  Google Scholar 

  19. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM (1995) The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 95(5):2281–2290. doi:10.1172/JCI117919

    Article  PubMed  CAS  Google Scholar 

  20. Grove G, Grove MJ, Zerweck C, Pierce E (1999) Comparative metrology of the evaporimeter and the DermaLab TEWL probe. Skin Res Technol 5(1):1–8

    Article  Google Scholar 

  21. Harvell JD, Maibach HI (1994) Percutaneous absorption and inflammation in aged skin: a review. J Am Acad Dermatol 31(6):1015–1021

    Article  PubMed  CAS  Google Scholar 

  22. Imhof RE, De Jesus ME, Xiao P, Ciortea LI, Berg EP (2009) Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance. Int J Cosmet Sci 31(2):97–118

    Article  PubMed  CAS  Google Scholar 

  23. Kerscher M, Williams S, Dubertret L (2007) Cosmetic dermatology and skin care. EJD 17(2):180–182

    PubMed  CAS  Google Scholar 

  24. Kobayashi H, Tagami H (2004) Distinct locational differences observable in biophysical functions of the facial skin: with special emphasis on the poor functional properties of the stratum corneum of the perioral region. Int J Cosmet Sci 26(2):91–101

    Article  PubMed  CAS  Google Scholar 

  25. Kobayashi H, Tagami H (2004) Functional properties of the surface of the vermilion border of the lips are distinct from those of the facial skin. Br J Dermatol 150(3):563–567

    Article  PubMed  CAS  Google Scholar 

  26. Machado M, Hadgraft J, Lane ME (2010) Assessment of the variation of skin barrier function with anatomic site, age, gender and ethnicity. Int J Cosmet Sci. doi:10.1111/j.1468-2494.2010.00587.x

  27. Marks R (1981) Measurement of biological ageing in human epidermis. Br J Dermatol 104(6):627–633

    Article  PubMed  CAS  Google Scholar 

  28. Mayrovitz HN, Bernal M, Brlit F, Desfor R (2012) Biophysical measures of skin tissue water: variations within and among anatomical sites and correlations between measures. Skin Res Technol. doi:10.1111/srt.12000

  29. Menon GK, Kligman AM (2009) Barrier functions of human skin: a holistic view. Skin Pharmacol Physiol 22(4):178–189. doi:10.1159/000231523

    Article  PubMed  CAS  Google Scholar 

  30. Mohammed D, Matts PJ, Hadgraft J, Lane ME (2012) Variation of stratum corneum biophysical and molecular properties with anatomic site. AAPS J 14(4):806–812. doi:10.1208/s12248-012-9400-3

    Article  PubMed  CAS  Google Scholar 

  31. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol 63(8):e1–e37. doi:10.1016/j.jclinepi.2010.03.004

    Article  PubMed  Google Scholar 

  32. Panisset F, Treffel P, Faivre B, Lecomte PB, Agache P (1992) Transepidermal water loss related to volar forearm sites in humans. Acta Derm Venereol 72(1):4–5

    Google Scholar 

  33. Pinnagoda J, Tupker RA, Agner T, Serup J (1990) Guidelines for transepidermal water loss (TEWL) measurement. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermat 22(3):164–178

    Article  CAS  Google Scholar 

  34. Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124(6):1099–1110. doi:10.1111/j.1523-1747.2005.23726.x

    Article  PubMed  CAS  Google Scholar 

  35. Roberts WE (2006) Dermatologic problems of older women. Dermatol Clin 24 (2):271–280, viii. doi:10.1016/j.det.2006.01.012

    Google Scholar 

  36. Rogers J, Harding C, Mayo A, Banks J, Rawlings A (1996) Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res 288(12):765–770

    Article  PubMed  CAS  Google Scholar 

  37. Rogiers V (2001) EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol 14(2):117–128

    Article  PubMed  CAS  Google Scholar 

  38. Rosado C, Pinto P, Rodrigues LM (2005) Comparative assessment of the performance of two generations of Tewameter: TM210 and TM300. Int J Cosmet Sci 27(4):237–241. doi:10.1111/j.1467-2494.2005.00270.x

    Article  PubMed  CAS  Google Scholar 

  39. Shah JH, Zhai H, Maibach HI (2005) Comparative evaporimetry in man. Skin Res Technol 11(3):205–208. doi:10.1111/j.1600-0846.2005.00099.x

    Article  PubMed  Google Scholar 

  40. Shlivko IL, Petrova GA, Zor’kina MV, Tchekalkina OE, Firsova MS, Ellinsky DO, Agrba PD, Kamensky VA, Donchenko EV (2012) Complex assessment of age-specific morphofunctional features of skin of different anatomic localizations. Skin Res Technol. doi:10.1111/j.1600-0846.2012.00613.x

  41. Steiner M, Aikman-Green S, Prescott GJ, Dick FD (2011) Side-by-side comparison of an open-chamber (TM 300) and a closed-chamber (Vapometer(™)) transepidermal water loss meter. Skin Res Technol. doi:10.1111/j.1600-0846.2011.00509.x

  42. Tagami H (2008) Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res 300(Suppl 1):S1–S6. doi:10.1007/s00403-007-0799-9

    Article  PubMed  Google Scholar 

  43. Tagami H, Kobayashi H, Kikuchi K (2002) A portable device using a closed chamber system for measuring transepidermal water loss: comparison with the conventional method. Skin Res Technol 8(1):7–12

    PubMed  Google Scholar 

  44. Tagami H, Kobayashi H, Zhen XS, Kikuchi K (2001) Environmental effects on the functions of the stratum corneum. J Investig Dermatol Symp Proc 6(1):87–94. doi:10.1046/j.0022-202x.2001.00016.x

    Article  PubMed  CAS  Google Scholar 

  45. Takema Y, Yorimoto Y, Kawai M, Imokawa G (1994) Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol 131(5):641–648

    Article  PubMed  CAS  Google Scholar 

  46. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M (2007) Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med 4(10):e297

    Article  PubMed  Google Scholar 

  47. Waller JM, Maibach HI (2005) Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 11(4):221–235. doi:10.1111/j.0909-725X.2005.00151.x

    Article  PubMed  Google Scholar 

  48. Xiao P, Imhof RE (2012) Two dimensional finite element modelling for dynamic water diffusion through stratum corneum. Int J Pharm 435(1):88–92. doi:10.1016/j.ijpharm.2012.01.047

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kottner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kottner, J., Lichterfeld, A. & Blume-Peytavi, U. Transepidermal water loss in young and aged healthy humans: a systematic review and meta-analysis. Arch Dermatol Res 305, 315–323 (2013). https://doi.org/10.1007/s00403-012-1313-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1313-6

Keywords

Navigation