Skip to main content

Advertisement

Log in

Photodynamic therapy: an innovative approach to the treatment of keloid disease evaluated using subjective and objective non-invasive tools

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Optimal management for keloid disease (KD) is ill defined, with surgical excision resulting in recurrence rates over 50 %. Photodynamic therapy (PDT) uses light to activate a photosensitiser localised in diseased tissues. Two recent case studies and in vitro studies on keloid-derived fibroblasts indicate potential use of PDT in treating KD. Therefore, we hypothesized that there may be a role for PDT in the treatment of KD. Twenty KD patients were divided into three groups; existing keloid scar, post-surgical debulking and post-total surgical excision. Patients underwent three treatments of PDT at weekly intervals. Methyl aminolevulinate photosensitiser applied 3 h prior to PDT, administered at 37 J/cm2. Non-invasive measures provided quantitative data for pliability, haemoglobin, melanin, collagen and flux. Pain and pruritus scores were measured and patients’ were monitored for KD recurrence. All patients had reduced pain and pruritus scores. Haemoglobin flux (p = 0.032), collagen (p = 0.066) and haemoglobin levels (p = 0.060) decreased from week 1 to 3 in all except one patient where measurements were taken and pliability increased significantly (p = 0.001). Increases in pliability were significantly related to decreases in flux (p = 0.001). Only one patient with a keloid in a stress-prone anatomical location experienced recurrence of KD. All other patients had no recurrence at 9-month follow-up. Minimal side effects were reported. In conclusion, PDT reduces scar formation in KD evidenced by decreased blood flow, increased pliability, decreased collagen and haemoglobin levels. These findings indicate potential utility of PDT in the treatment of KD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

ATP:

Adenosine 5-triphosphate

FLPI:

Full-field laser perfusion imaging

IL-1 alpha:

Interleukin-1 alpha

KD:

Keloid disease

MAL:

Methyl aminolevulinic acid

MMP:

Matrix metalloproteinase

PDT:

Photodynamic therapy

PpIX:

Protoporphyrin 9

SIAscopy:

Spectrophotometric intracutaneous analysis

TNF-alpha:

Tumour necrosis factor-alpha

References

  1. Aarabi S, Bhatt K, Shi Y, Paterno J, Chang E, Loh S, Holmes J, Longaker M, Yee H, Gurtner G (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB 21:3250–3261

    Article  CAS  Google Scholar 

  2. Akaishi S, Ogawa R, Hyakusoku H (2008) Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med Hypotheses 71:32–38

    Article  PubMed  CAS  Google Scholar 

  3. Atilli SK, Lesar A, Mcneill A, Camacho-Lopez M, Moseley H, Ibbotson S, Samuel ID, Ferguson J (2009) An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. BJD 161:170–173

    Article  Google Scholar 

  4. Bayat A, Arscott G, Ollier W, Ferguson MWJ, McGrouther DA (2003) ‘Aggressive keloid’: a severe variant of familial keloid scarring. J R Soc Med 96:554–555

    Article  PubMed  Google Scholar 

  5. Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life with keloid and hypertrophic scarring. Arch Derm Res 297:433–443

    Article  PubMed  Google Scholar 

  6. Boehncke WH (2000) Systemic photodynamic therapy is a safe and effective treatment for psoriasis. Arch Dermatol 136:271–272

    Article  PubMed  CAS  Google Scholar 

  7. Braakhuis BJM, Tabor MP, Kummer A, Leemans CR, Brakenhoff RH (2003) A genetic explanation of slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 63:1727–1730

    PubMed  CAS  Google Scholar 

  8. Braathen LR, Szeimies RM, Basset-Seguin N, Bissonnette R, Foley P, Pariser D, Roelandts R, Wennberg AM, Morton CA (2005) Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International Society for Photodynamic Therapy in Dermatology. J Am Acad Dermatol 56:125–143

    Article  Google Scholar 

  9. Brown BC, McKenna SP, Siddhi K, McGrouther DA, Bayat A (2008) The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconstr Aesthet Surg 61:1049–1058

    Article  PubMed  CAS  Google Scholar 

  10. Brown B, McKenna S, Solomon M, Wilburn J, McGrouther DA, Bayat A (2010) The patient-reported impact of scars measure: development and validation. Plast Reconstr Surg 125:1439–1449

    Article  PubMed  CAS  Google Scholar 

  11. Brown BC, Moss TP, McGrouther DA, Bayat A (2010) Skin scar preconceptions must be challenged: importance of self-perception in skin scarring. J Plast Reconstr Aesthet Surg 63:1022–1029

    Article  PubMed  CAS  Google Scholar 

  12. Bruscino N, Lotti T, Rossi R (2011) Photodynamic therapy for a hypertrophic scarring: a promising choice. Photodermatol Photoimmunol Photomed 27:334–335

    Article  PubMed  Google Scholar 

  13. Calzavara-Pinton PG, Venturini M, Sala R (2007) Photodynamic therapy: update 2006 Part 1: photochemistry and photobiology. JEADV 21:293–302

    PubMed  CAS  Google Scholar 

  14. Campbell SM, Tyrrell J, Marshall R, Curnow A (2010) Effect of MAL-photodynamic therapy on hypertrophic scarring. Photodiagnosis Photodyn Ther 7:183–188

    Article  PubMed  CAS  Google Scholar 

  15. Chiu LL, Sun CH, Yeh AT, Torkian B, Karamzadeh A, Tromberg B, Wong BJ (2005) Photodynamic therapy on keloid fibroblasts in tissue-engineered keratinocyte-fibroblast co-culture. Lasers Surg Med 37:231–244

    Article  PubMed  Google Scholar 

  16. Christensen E, Warloe T, Kroon S, Funk J, Helsing P, Soler AM, Stang HJ, Vante O, Mork C (2010) Guidelines for practical use of MAL-PDT in non-melanoma skin cancer. JEADV 24:505–512

    PubMed  CAS  Google Scholar 

  17. Dienus K, Bayat A, Gilmore BF, Seifert O (2010) Increased expression of fibroblast activation protein-alpha in keloid fibroblasts: implications for development of a novel treatment option. Arch Dermatol Res 302:725–731

    Article  PubMed  CAS  Google Scholar 

  18. Durani P, Bayat A (2008) Levels of evidence for the treatment of keloid disease. J Plast Reconstr Aesthet Surg 61:4–17

    Article  PubMed  CAS  Google Scholar 

  19. Froelich K, Staudenmaier R, Kleinsasser N, Hagen R (2007) Therapy of auricular keloids: a review of different treatment modalities and proposal for a therapeutic algorithm. Eur Arch Otorhino 264:1497–7508

    Article  CAS  Google Scholar 

  20. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17:113–125

    Article  PubMed  CAS  Google Scholar 

  21. Gulleth Y, Goldberg N, Silverman RP, Gastman BR (2010) What is the best surgical margin for a Basal cell carcinoma: a meta-analysis of the literature. Plast Reconstr Surg 126:1222–1231

    Article  PubMed  CAS  Google Scholar 

  22. Halim AS, Emami A, Salahshourifar I, Kannan TP (2012) Keloid scarring: understanding the genetic basis, advances, and prospects. Arch Plast Surg 39:184–189

    Article  PubMed  Google Scholar 

  23. Hollywood KA, Maatje M, Shadi IT, Henderson A, McGrouther DA (2010) Phenotypic profiling of keloid scars using FT-IR microspectroscopy reveals a unique spectral signature. Arch Dermatol Res 302:705–715

    Article  PubMed  Google Scholar 

  24. Iqbal SA, Sidgwick GP, Bayat A (2012) Identification of fibrocytes from mesenchymal stem cells in keloid tissue: a potential source of abnormal fibroblasts in keloid scarring. Arch Dermatol Res 304:665–671

    Article  PubMed  CAS  Google Scholar 

  25. Iqbal SA, Syed F, McGrouther DA, Paus R, Bayat A (2010) Differential distribution of haematopoietic and nonhaematopoietic progenitor cells in intralesional and extralesional keloid: do keloid scars provide a niche for nonhaematopoietic mesenchymal stem cells? Br J Dermatol 162:1377–1383

    Article  PubMed  CAS  Google Scholar 

  26. Javad F, Day PJ (2012) Protein profiling of keloidal scar tissue. Arch Dermatol Res 304:533–540

    Article  PubMed  CAS  Google Scholar 

  27. Karrer S, Abels C, Landthaler M, Szeimes RM (2000) Topical photodynamic therapy for localised scleroderma. Acta Derm Venereol 80:26–27

    Article  PubMed  CAS  Google Scholar 

  28. Karrer S, Bosserhoff A, Weiderer P, Landthaler M, Szeimies RM (2003) Influence of 5-aminolevulinic acid and red light on collagen metabolism of human dermal fibroblasts. J Invest Dermatol 120:325–331

    Article  PubMed  CAS  Google Scholar 

  29. Karrer S, Bosserhoff AK, Weiderer P, Landthaler M, Szeimies RM (2004) Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts. Br J of Derm 151:776–783

    Article  CAS  Google Scholar 

  30. King KM, McFetridge-Durdle J, LeBlanc P, Anzarut A, Tsuyuki RT (2008) A descriptive examination of the impact of sternal scar formation in women. Eur J Cardiovasc Nurs 8:112–118

    Article  PubMed  Google Scholar 

  31. Lau K, Paus R, Tiede S, Day P, Bayat A (2009) Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol 18:921–933

    Article  PubMed  CAS  Google Scholar 

  32. Li X, Zhou ZP, Hu L, Zhang WJ, Li W (2012) Apoptotic cell death induced by 5-aminolevulinic acid-mediated photodynamic therapy of hypertrophic scar-derived fibroblasts. J Dermatolog Treat [Epub ahead of print]

  33. Mendoza J, Sebastian A, Allan E, Allan D, Mandal P, Alonso-Rasgado T, Bayat A (2012) Differential cytotoxic response in keloid fibroblasts exposed to photodynamic therapy is dependent on photosensitiser precursor, fluence and location of fibroblasts within the lesion. Arch Dermatol Res 304:549–562

    Google Scholar 

  34. Mrowietz U, Seifert O (2009) Keloid scarring: new treatments ahead. Actas Dermosifiliogr 100:75–83

    Article  PubMed  Google Scholar 

  35. Nie Z, Bayat A, Behzad F, Rhodes L (2010) Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy. Photodermatol Photoimmunol Photomed 26:330–332

    Article  PubMed  Google Scholar 

  36. Peng Q, Soler AM, Warloe T, Nesland JM, Giercksky KE (2001) Selective distribution of porphyrins in skin thick basal cell carcinoma after topical application of methyl 5-aminolevulinate. J Photochem Photobiol B 62:140–145

    Article  PubMed  CAS  Google Scholar 

  37. Seifert O, Mrowietz U (2009) Keloid Scarring: bench and bedside. Arch Dermatol Res 301:259–272

    Article  PubMed  Google Scholar 

  38. Shih B, Bayat A (2012) Comparative genomic hybridisation analysis of keloid tissue in Caucasians suggests possible involvement of HLA-DRB5 in disease pathogenesis. Arch Dermatol Res 304:241–249

    Article  PubMed  CAS  Google Scholar 

  39. Shih B, Bayat A (2010) Genetics of keloid scarring. Arch Dermatol Res 302:319–339

    Article  PubMed  CAS  Google Scholar 

  40. Shih B, Garside E, McGrouther DA, Bayat A (2010) Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Rep Regen 18:139–153

    Article  Google Scholar 

  41. Simon R, Eltze E, Scafer KL, Burger H, Semjonow A, Hertle L, Dokhorn-Dworniczak B, Terpe HJ, Bocker W (2001) Cytogenetic analysis of multifocal bladder cancer supports a monoclonal origin and intra epithelial spread of tumour cells. Cancer Res 61:332–355

    Google Scholar 

  42. Slaughter DP, Southwick HW, Smejkal W (1953) “Field cancerization” in oral stratified squamous epithelium. Cancer 6:963–968

    Article  PubMed  CAS  Google Scholar 

  43. Syed F, Ahmadi E, Iqbal SA, Singh S, McGrouther DA, Bayat A (2010) Fibroblasts from the growing margin of keloid scars produce higher levels of collagen I and III expression compared to intra- and extra-lesional sites: clinical implications for lesional site-directed therapy. BJD 164:83–96

    Article  Google Scholar 

  44. Tabor MP, Brakenhoff RH, Ruijter-Scippers HJ, van der Wal JE, Snow GB, Leemans CR, Braakhuis BJM (2002) Multiple head and neck tumours frequently originate from a single preneoplastic lesion. Am J Pathol 161:1051–1060

    Article  PubMed  CAS  Google Scholar 

  45. Tan K, Shah N, Pritchard S, McGrouther DA, Bayat A (2010) The influence of surgical excision margins on keloid prognosis. Ann Plas Surg 64:55–58

    Article  CAS  Google Scholar 

  46. Vincent AS, Phan TT, Mukhopadhyay A, Lim HY, Halliwell B, Wong KP (2008) Human skin keloid fibroblasts display bioenergetics of cancer cells. J Investig Dermatol 128:702–709

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Galderma UK kindly provided the methyl aminolevulinate (MAL) photosensitiser for the purpose of this study but no funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardeshir Bayat.

Additional information

S. Ud-Din and G. Thomas have contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ud-Din, S., Thomas, G., Morris, J. et al. Photodynamic therapy: an innovative approach to the treatment of keloid disease evaluated using subjective and objective non-invasive tools. Arch Dermatol Res 305, 205–214 (2013). https://doi.org/10.1007/s00403-012-1295-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-012-1295-4

Keywords

Navigation