Skip to main content

Advertisement

Log in

Autoantibody against one of the antioxidant repair enzymes, methionine sulfoxide reductase A, in systemic sclerosis: association with pulmonary fibrosis and vascular damage

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis and vascular changes in the skin and internal organs with autoimmune background. It has been suggested that oxidative stress plays an important role in the development of SSc. To determine the prevalence and clinical correlation of autoantibody to methionine sulfoxide reductase A (MSRA), one of the antioxidant repair enzymes, in SSc, serum anti-MSRA autoantibody levels were examined in patients with SSc by enzyme-linked immunosorbent assay using recombinant MSRA. The presence of anti-MSRA antibody was evaluated by immunoblotting. To determine the functional relevance of anti-MSRA antibody in vivo, we assessed whether anti-MSRA antibody was able to inhibit MSRA enzymatic activity. Serum anti-MSRA antibody levels in SSc patients were significantly higher compared to controls and this autoantibody was detected in 33% of SSc patients. Serum anti-MSRA levels were significantly elevated in SSc patients with pulmonary fibrosis, cardiac involvement, or decreased total antioxidant power compared with those without them. Anti-MSRA antibodies also correlated positively with renal vascular damage determined as pulsatility index by color-flow Doppler ultrasonography of the renal interlobar arteries and negatively with pulmonary function tests. Furthermore, anti-MSRA antibody levels correlated positively with serum levels of 8-isoprostane and heat shock protein 70 that are markers of oxidative and cellular stresses. Remarkably, MSRA activity was inhibited by IgG isolated from SSc sera containing IgG anti-MSRA antibody. These results suggest that elevated anti-MSRA autoantibody is associated with the disease severity of SSc and may enhance the oxidative stress by inhibiting MSRA enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Subcommittee for Scleroderma Criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee (1980) Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 23:581–590

    Article  Google Scholar 

  2. Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (first of two parts). N Engl J Med 292:344–347

    Article  CAS  PubMed  Google Scholar 

  3. Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (second of two parts). N Engl J Med 292:403–407

    CAS  PubMed  Google Scholar 

  4. Butler AR, Flitney FW, Williams DL (1995) NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist’s perspective. Trends Pharmacol Sci 16:18–22

    Article  CAS  PubMed  Google Scholar 

  5. Clements PJ, Lachenbruch PA, Seibold JR, Zee B, Steen VD, Brennan P et al (1993) Skin thickness score in systemic sclerosis: an assessment of interobserver variability in 3 independent studies. J Rheumatol 20:1892–1896

    CAS  PubMed  Google Scholar 

  6. Emerit I, Filipe P, Meunier P, Auclair C, Freitas J, Deroussent A et al (1997) Clastogenic activity in the plasma of scleroderma patients: a biomarker of oxidative stress. Dermatology 194:140–146

    Article  CAS  PubMed  Google Scholar 

  7. Ganter MT, Ware LB, Howard M, Roux J, Gartland B, Matthay MA et al (2006) Extracellular heat shock protein 72 is a marker of the stress protein response in acute lung injury. Am J Physiol Lung Cell Mol Physiol 291:L354–L361

    Article  CAS  PubMed  Google Scholar 

  8. Hansel A, Kuschel L, Hehl S, Lemke C, Agricola HJ, Hoshi T et al (2002) Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins. FASEB J 16:911–913

    CAS  PubMed  Google Scholar 

  9. Herrick AL, Rieley F, Schofield D, Hollis S, Braganza JM, Jayson MI (1994) Micronutrient antioxidant status in patients with primary Raynaud’s phenomenon and systemic sclerosis. J Rheumatol 21:1477–1483

    CAS  PubMed  Google Scholar 

  10. Hoshi T, Heinemann S (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Kadono T, Kikuchi K, Sato S, Soma Y, Tamaki K, Takehara K (1995) Elevated plasma endothelin levels in systemic sclerosis. Arch Dermatol Res 287:439–442

    Article  CAS  PubMed  Google Scholar 

  12. Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW et al (2005) Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. J Immunol 175:2622–2629

    CAS  PubMed  Google Scholar 

  13. Kodera M, Hayakawa I, Komura K, Yanaba K, Hasegawa M, Takehara K et al (2005) Anti-lipoprotein lipase antibody in systemic sclerosis: association with elevated serum triglyceride concentrations. J Rheumatol 32:629–636

    CAS  PubMed  Google Scholar 

  14. Koh Y, Lim CM, Kim MJ, Shim TS, Lee SD, Kim WS et al (1999) Heat shock response decreases endotoxin-induced acute lung injury in rats. Respirology 4:325–330

    Article  CAS  PubMed  Google Scholar 

  15. Kuschel L, Hansel A, Schonherr R, Weissbach H, Brot N, Hoshi T et al (1999) Molecular cloning and functional expression of a human peptide methionine sulfoxide reductase (hMsrA). FEBS Lett 456:17–21

    Article  CAS  PubMed  Google Scholar 

  16. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    CAS  PubMed  Google Scholar 

  17. Montuschi P, Ciabattoni G, Paredi P, Pantelidis P, du Bois RM, Kharitonov SA et al (1998) 8-Isoprostane as a biomarker of oxidative stress in interstitial lung diseases. Am J Respir Crit Care Med 158:1524–1527

    CAS  PubMed  Google Scholar 

  18. Morad Y, Banin E, Averbukh E, Berenshtein E, Obolensky A, Chevion M (2005) Treatment of ocular tissues exposed to nitrogen mustard: beneficial effect of zinc desferrioxamine combined with steroids. Invest Ophthalmol Vis Sci 46:1640–1646

    Article  PubMed  Google Scholar 

  19. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  CAS  PubMed  Google Scholar 

  20. Morrow JD, Roberts LJ 2nd (1996) The isoprostanes. Current knowledge and directions for future research. Biochem Pharmacol 51:1–9

    Article  CAS  PubMed  Google Scholar 

  21. Moskovitz J, Weissbach H, Brot N (1996) Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins. Proc Natl Acad Sci USA 93:2095–2099

    Article  CAS  PubMed  Google Scholar 

  22. Murrell DF (1993) A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol 28:78–85

    Article  CAS  PubMed  Google Scholar 

  23. Murrell GA, Francis MJ, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265:659–665

    CAS  PubMed  Google Scholar 

  24. Nishijima C, Sato S, Hasegawa M, Nagaoka T, Hirata A, Komatsu K et al (2001) Renal vascular damage in Japanese patients with systemic sclerosis. Rheumatology (Oxford) 40:406–409

    Article  CAS  Google Scholar 

  25. Ogawa F, Sander CS, Hansel A, Oehrl W, Kasperczyk H, Elsner P et al (2006) The repair enzyme peptide methionine-S-sulfoxide reductase is expressed in human epidermis and upregulated by UVA radiation. J Invest Dermatol 126:1128–1134

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa F, Shimizu K, Hara T, Muroi E, Hasegawa M, Takehara K et al (2008) Serum levels of heat shock protein 70, a biomarker of cellular stress, are elevated in patients with systemic sclerosis: association with fibrosis and vascular damage. Clin Exp Rheumatol 26:659–662

    CAS  PubMed  Google Scholar 

  27. Ogawa F, Shimizu K, Muroi E, Hara T, Hasegawa M, Takehara K et al (2006) Serum levels of 8-isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis. Rheumatology (Oxford) 45:815–818

    Article  CAS  Google Scholar 

  28. Okano Y (1996) Antinuclear antibody in systemic sclerosis (scleroderma). Rheum Dis Clin North Am 22:709–735

    Article  CAS  PubMed  Google Scholar 

  29. Peng SL, Fatenejad S, Craft J (1997) Scleroderma: a disease related to damaged proteins? Nat Med 3:276–278

    Article  CAS  PubMed  Google Scholar 

  30. Prentice HM, Moench IA, Rickaway ZT, Dougherty CJ, Webster KA, Weissbach H (2008) MsrA protects cardiac myocytes against hypoxia/reoxygenation induced cell death. Biochem Biophys Res Commun 366:775–778

    Article  CAS  PubMed  Google Scholar 

  31. Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G et al (2001) Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum 44:2653–2664

    Article  CAS  PubMed  Google Scholar 

  32. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 165:6635–6643

    CAS  PubMed  Google Scholar 

  33. Sato S, Hayakawa I, Hasegawa M, Fujimoto M, Takehara K (2003) Function blocking autoantibodies against matrix metalloproteinase-1 in patients with systemic sclerosis. J Invest Dermatol 120:542–547

    Article  CAS  PubMed  Google Scholar 

  34. Sato S, Ihn H, Kikuchi K, Takehara K (1994) Antihistone antibodies in systemic sclerosis. Association with pulmonary fibrosis. Arthritis Rheum 37:391–394

    Article  CAS  PubMed  Google Scholar 

  35. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550

    Article  CAS  PubMed  Google Scholar 

  36. Sreekumar PG, Kannan R, Yaung J, Spee CK, Ryan SJ, Hinton DR (2005) Protection from oxidative stress by methionine sulfoxide reductases in RPE cells. Biochem Biophys Res Commun 334:245–253

    Article  CAS  PubMed  Google Scholar 

  37. Stein CM, Tanner SB, Awad JA, Roberts LJ 2nd, Morrow JD (1996) Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheum 39:1146–1150

    Article  CAS  PubMed  Google Scholar 

  38. Stites WE, Froude JW 2nd (2007) Does the oxidation of methionine in thrombomodulin contribute to the hypercoaguable state of smokers and diabetics? Med Hypotheses 68:811–821

    Article  CAS  PubMed  Google Scholar 

  39. Suematsu M, Wakabayashi Y, Ishimura Y (1996) Gaseous monoxides: a new class of microvascular regulator in the liver. Cardiovasc Res 32:679–686

    CAS  PubMed  Google Scholar 

  40. Takahashi H, Ito S, Hanano M, Wada K, Niwano H, Seki Y et al (1992) Circulating thrombomodulin as a novel endothelial cell marker: comparison of its behavior with von Willebrand factor and tissue-type plasminogen activator. Am J Hematol 41:32–39

    Article  CAS  PubMed  Google Scholar 

  41. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    Article  CAS  PubMed  Google Scholar 

  42. Thiele JJ, Schroeter C, Hsieh SN, Podda M, Packer L (2001) The antioxidant network of the stratum corneum. Curr Probl Dermatol 29:26–42

    Article  CAS  PubMed  Google Scholar 

  43. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  44. Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–105

    Article  CAS  PubMed  Google Scholar 

  45. Vougier S, Mary J, Friguet B (2003) Subcellular localization of methionine sulphoxide reductase A (MsrA): evidence for mitochondrial and cytosolic isoforms in rat liver cells. Biochem J 373:531–537

    Article  CAS  PubMed  Google Scholar 

  46. Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B et al (2002) Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397:172–178

    Article  CAS  PubMed  Google Scholar 

  47. Yermolaieva O, Xu R, Schinstock C, Brot N, Weissbach H, Heinemann SH et al (2004) Methionine sulfoxide reductase A protects neuronal cells against brief hypoxia/reoxygenation. Proc Natl Acad Sci USA 101:1159–1164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. A. Usui, M. Yozaki, and K. Shimoda for technical assistance. This work was supported by a grant of Research on Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, F., Shimizu, K., Hara, T. et al. Autoantibody against one of the antioxidant repair enzymes, methionine sulfoxide reductase A, in systemic sclerosis: association with pulmonary fibrosis and vascular damage. Arch Dermatol Res 302, 27–35 (2010). https://doi.org/10.1007/s00403-009-0996-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-0996-9

Keywords

Navigation