Skip to main content

Advertisement

Log in

The effect of the moisture content of a local heat source on the blood flow response of the skin

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Numerous studies have examined the effect of local and global heating of the body on skin blood flow. However, the effect of the moisture content of the heat source on the skin blood flow response has not been examined. Thirty-three subjects, without diabetes or cardiovascular disease, between the ages of 22 and 32 were examined to determine the relationship between the effects of dry vs. moist heat applied for the same length of time and with the skin clamped at the same skin temperature on the blood flow response of the skin. The skin, heated with an infrared heat lamp (skin temperature monitored with a thermocouple) to 40°C for 15 min, was either kept moist with wet towels or, in a separate experiment, kept dry with Drierite (a desiccant) between the towels to remove any moisture. Before and after heat exposure of the forearm, blood pressure, heart rate, skin moisture content, skin temperature, and skin blood flow were recorded. The results of the experiment showed that there was no change in skin moisture after 15 min exposure to dry heat at 40°C. However, with moist heat, skin moisture increased by 43.7%, a significant increase (P < 0.05). With dry heat, blood flow increased from the resting value by 282.3% whereas with moist heat, blood flow increased by 386% over rest, a significant increase over dry heat (P < 0.05). Thus, with a set increase in skin temperature, moist heat was a better heating modality than dry heat. The reason may be linked to moisture sensitivity in calcium channels in the vascular endothelial cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Batisse D, Giron F, Leveque JL (2006) Capacitance imaging of the skin surface. Skin Res Technol 12(2):99–104. doi:10.1111/j.0909-752X.2006.00177.x

    Article  PubMed  Google Scholar 

  2. Charkoudian N, Eisenach J, Atkinson J, Fealey R, Joynder M (2002) Effects of chronic sympathectomy on locally mediated cutaneous vasodilation in humans. J Appl Physiol 92:685–690

    PubMed  Google Scholar 

  3. Coyle EF, Montain SJ (1992) Benefits of fluid replacement with carbohydrate during exercise. Med Sci Sports Exerc 24:S324–S330

    PubMed  CAS  Google Scholar 

  4. D’hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, Voets T, Nilius B (2008) Stimulus specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 283(10):6272–6280. doi:10.1074/jbc.M706386200

    Article  PubMed  CAS  Google Scholar 

  5. Gonullu U, Sensoy D, Uner M, Yener G, Altinkurt T (2006) Comparing the moisturizing effects of ascorbic acid and calcium ascorbate against that of tocopherol in emulsions. J Cosmet Sci 57(6):465–473

    PubMed  CAS  Google Scholar 

  6. Hecox B, Mehreteab TA, Weisberg J (1994) Physical agents: a comprehensive text for physical therapists. Appleton & Lange, Norwalk

    Google Scholar 

  7. Low D, Shibasaki M, Davis S, Keller D, Crandall C (2007) Does local heating-induced nitric oxide production attenuate vasoconstrictor responsiveness to lower body negative pressure in human skin? J Appl Physiol 102:1839–1843. doi:10.1152/japplphysiol.01181.2006

    Article  PubMed  CAS  Google Scholar 

  8. Lubbe AS (1994) Heat shock attenuates endothelium-dependent vasodilation in skeletal muscle microcirculation. Shock 2(3):179–184

    Article  PubMed  CAS  Google Scholar 

  9. Michlovitz SL (1996) Thermal agents in rehabilitation, 3rd edn. F.A. Davis Company, Philadelphia

    Google Scholar 

  10. Minson CT, Berry LT, Joyner MJ (2001) Nitric oxide and neutrally mediated regulation of skin blood flow during local heating. J Appl Physiol 91:1619–1626

    PubMed  CAS  Google Scholar 

  11. Montain SJ, Coyle EF (1992) Fluid ingestion during exercise skin blood flow independent of increases in blood volume. J Appl Physiol 73(3):903–910

    PubMed  CAS  Google Scholar 

  12. McLellan K, Petrofsky JS, Bains G, Zimmerman G, Prowse M, Lee S (2009) The effects of skin moisture and subcutaneous fat thickness on the ability of the skin to dissipate heat in young and old subjects, with and without diabetes, at three environmental room temperatures. Med Eng Phys 31(2):165–172. doi:10.1016/j.medengphy.2008.08.004

    Article  PubMed  Google Scholar 

  13. Petrofsky JS, Bains G, Prowse M, Gunda S, Berk L, Chinna R, Ethiraju G, Vanarasa D, Madani P (2008) Does skin moisture influence the blood flow response to local heat? J Med Eng Technol (in press)

  14. Petrofsky JS, Lohman EIII, Lee S, de la Cuesta Z, Labial L, Iouciulescu R, Moseley B, Korson R, Al Malty A (2006) The influence of alterations in room temperature on skin blood flow during contrast baths in patients with diabetes. Med Sci Monit 12(7):CR290–CR295

    PubMed  Google Scholar 

  15. Petrofsky JS, Hinds C, Prowse M, Batt J, Suh HJ (2007) The interrelationships between electrical stimulation, the environment surrounding the vascular endothelial cells of the skin, and the role of nitric oxide in mediating the blood flow response to electrical stimulation. Med Sci Monit 13(9):CR391–CR397

    PubMed  Google Scholar 

  16. Petrofsky JS, Lawson D, Rossi C, Zapata K, Broadwell A, Littleton L, Suh H (2007) The influence of local and global heat on the healing of chronic wounds in patients with diabetes. Diabetes Technol Ther 9:535–544

    Article  PubMed  Google Scholar 

  17. Petrofsky JS, Laymon M (2008) Heat transfer to deep tissue—effect of body fat and heating modality. J Med Eng Technol (in press)

  18. Petrofsky JS, McLlellen K, Bains G, Prowse M, Ethiraju G, Lee S, Gunda S, Lohman E (2008) The influence of diabetes on the ability for the skin to dissipate heat; the impact of skin thickness and subcutaneous fat. Diabetes Technol Ther 10:487–493

    Article  PubMed  Google Scholar 

  19. Plant TD, Strotmann R (2007) TRPV4. Handb Exp Pharmacol 179:189–205

    Article  PubMed  CAS  Google Scholar 

  20. Schmiedel O, Schroeter ML, Harvey JN (2007) Microalbuminuria in type 2 diabetes indicates impaired microvascular vasomotion and perfusion. Am J Physiol Heart Circ Physiol 293(6):H3424–H3431. doi:10.1152/ajpheart.00558.2007

    Article  PubMed  CAS  Google Scholar 

  21. Somlyo AV (2007) Cyclic GMP regulation of myosin phosphatase: a new piece for the puzzle? Circ Res 101(7):645–647. doi:10.1161/CIRCRESAHA.107.161893

    Article  PubMed  CAS  Google Scholar 

  22. Stewart JM, Medow, Minson CT, Taneja I (2007) Cutaneous neuronal nitric oxide is specifically decreased in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 293(4):H2161–H2167. doi:10.1152/ajpheart.00600.2007

    Article  PubMed  CAS  Google Scholar 

  23. Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279(34):35133–35138

    Article  PubMed  CAS  Google Scholar 

  24. Watanabe H, Davis J, Smart D, Jerman J, Smith G, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham C, Nilius B (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277(16):13569–13577. doi:10.1074/jbc.M200062200

    Article  PubMed  CAS  Google Scholar 

  25. Watanabe H, Vriens J, Suh S, Benham C, Droogmans G, Nilius B (2002) Heat evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277(49):47044–47051. doi:10.1074/jbc.M208277200

    Article  PubMed  CAS  Google Scholar 

  26. Widmer RJ, Laurinec JE, Young MF, Laine GA, Quick CM (2006) Local heat produces a shear-mediated biphasic response in the emergency thermoregulatory microcirculation of the Pallid bat wing. Am J Physiol Regul Integr Comp Physiol 291(3):R625–R632. doi:10.1152/ajpregu.00929.2005

    PubMed  CAS  Google Scholar 

  27. Widmer RJ, Laurinec JE, Young MF, Mohiuddin MW, Laine GA, Quick CM (2008) The origin of the biphasic flow response to local heat in skin. Microcirculation 15(4):349–357. doi:10.1080/10739680701745388

    Article  PubMed  Google Scholar 

  28. Xhauflaire-Uhoda E, Paquet P, Pierard GE (2008) Dew point effect of cooled hydrogel pads on human stratum corneum biosurface. Dermatology 216(1):37–39. doi:10.1159/000109356

    Article  PubMed  CAS  Google Scholar 

  29. Zecconi A, Binda E, Dapra V, Hemling T, Piccinini R (2005) Field study on protocols for evaluation of teat skin conditions. J Vet Med B Infect Dis Vet Public Health 52(5):219–225. doi:10.1111/j.1439-0450.2005.00854.x

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrold Scott Petrofsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrofsky, J.S., Bains, G., Raju, C. et al. The effect of the moisture content of a local heat source on the blood flow response of the skin. Arch Dermatol Res 301, 581–585 (2009). https://doi.org/10.1007/s00403-009-0957-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-0957-3

Keywords

Navigation