Skip to main content
Log in

Initial stability of a new cementless fixation method of a tibial component with polyaxial locking screws: a biomechanical in vitro examination

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Cementless fixation of the tibial component is critical as reduced initial stability leads to implant failure. In this experimental in vitro study, a new fixation method of the tibial component using polyaxial locking screws is evaluated using Roentgen stereophotogrammetric analysis (RSA).

Materials and Methods

A special prototype of a tibial component with four polyaxial locking screws was tested on 10 fresh-frozen human tibia specimens. The components were tested with an axial load of 2000 N for 10,000 cycles. Radiographs in two views were performed before loading, after 1000 and after 10,000 cycles, respectively. Besides rotation and translation along the x-, y-, and z-axes, endpoints for RSA were maximum subsidence (MaxSub), maximum lift off (MaxLiftOff) and maximum total point motion (MTPM).

Results

MaxSub increased from −0.5 mm (SD = 0.2) after 1000 cycles to −0.9 mm (SD = 1.1). MaxLiftOff was 0.1 mm after 1000 cycles and did not increase after 10,000 cycles. The MTPM was 0.7 mm (SD = 0.3) after 1000 cycles and 1.1 mm (SD = 1.1) after 10,000 cycles. Two out of nine implants showed an MTPM ≥ 1.0 mm after 10,000 cycles.

Conclusions

Polyaxial locking screws can potentially improve the initial stability of tibial components. The results of this study indicate that the use of such screws in total knee arthroplasty may be of interest in the future. Further experimental and clinical investigation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adalberth G, Nilsson KG, Kärrholm J, Hassander H (2002) Fixation of the tibial component using CMW-1 or Palacos bone cement with gentamicin: similar outcome in a randomized radiostereometric study of 51 total knee arthroplasties. Acta Orthop Scand 73(5):531–538

    Article  PubMed  Google Scholar 

  2. Akizuki S, Takizawa T, Horiuchi H (2003) Fixation of a hydroxyapatite-tricalcium phosphate-coated cementless knee prosthesis. Clinical and radiographic evaluation seven years after surgery. J Bone Joint Surg Br 85(8):1123–1127

    Article  CAS  PubMed  Google Scholar 

  3. Al-Mouazzen L, Chou DT, Kyriakopoulos G, Hambidge J (2014) Polyaxial versus uniaxial volar locking plate for distal radial fractures. J Orthop Surg (Hong Kong) 22(1):9–12

    Google Scholar 

  4. Albrektsson BE, Carlsson LV, Freeman MA, Herberts P, Ryd L (1992) Proximally cemented versus uncemented Freeman-Samuelson knee arthroplasty. A prospective randomised study. J Bone Joint Surg Br 74(2):233–238

    CAS  PubMed  Google Scholar 

  5. Berger R, Lyon J, Jacobs J, et al (2001) Problems with cementless total knee arthroplasty at 11 years followup. Clin Orthop Relat Res 392:196–207

    Article  PubMed  Google Scholar 

  6. Biggi F, Di Fabio S, D’Antimo C, Trevisani S (2010) Tibial plateau fractures: internal fixation with locking plates and the MIPO technique. Injury 41(11):1178–1182

    Article  CAS  PubMed  Google Scholar 

  7. Carlsson A, Bjorkman A, Besjakov J, Onsten I (2005) Cemented tibial component fixation performs better than cementless fixation: a randomized radiostereometric study comparing porous-coated, hydroxyapatite-coated and cemented tibial components over 5 years. Acta Orthop 76(3):362–369

    PubMed  Google Scholar 

  8. Cournapeau J, Klouche S, Bauer T, Hardy P (2015) Survival and functional results after a mean follow-up of 9 years with the Ceragyr® highly congruent mobile-bearing TKA. Orthop Traumatol Surg Res 101(4):455–460

    Article  CAS  PubMed  Google Scholar 

  9. Cullen A, Curtiss S, Lee M (2009) Biomechanical comparison of polyaxial and uniaxial locking plate fixation in a proximal tibial gap model. J Orthop Trauma 23(7):507–513

    Article  PubMed  Google Scholar 

  10. Dodd CA, Hungerford DS, Krackow KA (1990) Total knee arthroplasty fixation. Comparison of the early results of paired cemented versus uncemented porous coated anatomic knee prostheses. Clin Orthop Relat Res (260):66–70

  11. Efe T, Figiel J, Danek S, Tibesku CO, Paletta JR, Skwara A (2011) Initial stability of tibial components in primary knee arthroplasty. A cadaver study comparing cemented and cementless fixation techniques. Acta Orthop Belg 77(3):320–328

    PubMed  Google Scholar 

  12. El-Zayat BF, Ruchholtz S, Efe T et al (2012) NCB-plating in the treatment of geriatric and periprosthetic femoral fractures. Orthop Traumatol Surg Res 98(7):765–772

    Article  CAS  PubMed  Google Scholar 

  13. Erhardt JB, Grob K, Roderer G, Hoffmann A, Forster TN, Kuster MS (2008) Treatment of periprosthetic femur fractures with the non-contact bridging plate: a new angular stable implant. Arch Orthop Trauma Surg 128(4):409–416

    Article  CAS  Google Scholar 

  14. Ferguson RP, Friederichs MG, Hofmann AA (2008) Comparison of screw and screwless fixation in cementless total knee arthroplasty. Orthopedics 31(2):127

    Article  PubMed  Google Scholar 

  15. Goldberg VM, Kraay M (2004) The outcome of the cementless tibial component: a minimum 14-year clinical evaluation. Clin Orthop Relat Res 428:214–220

    Article  PubMed  Google Scholar 

  16. Gunst S, Fessy MH (2015) The effect of obesity on mechanical failure after total knee arthroplasty. Ann Transl Med 3(20):310

    PubMed  PubMed Central  Google Scholar 

  17. Hansson U, Ryd L, Toksvig-Larsen S (2008) A randomised RSA study of Peri-Apatite HA coating of a total knee prosthesis. Knee 15(3):211–216

    Article  PubMed  Google Scholar 

  18. Hilding MB, Lanshammar H, Ryd L (1996) Knee joint loading and tibial component loosening. RSA and gait analysis in 45 osteoarthritic patients before and after TKA. J Bone Joint Surg Br 78(1):66–73

    CAS  PubMed  Google Scholar 

  19. Hoffmann MF, Lotzien S, Schildhauer TA (2016) Clinical outcome of interprosthetic femoral fractures treated with polyaxial locking plates. Injury 47(4):934–938

    Article  CAS  PubMed  Google Scholar 

  20. Hofmann A, Evanich J, Ferguson R, Camargo M (2001) Ten- to 14-year clinical followup of the cementless natural knee system. Clin Orthop Relat Res 388:85–94

    Article  PubMed  Google Scholar 

  21. Khan M, Osman K, Green G, Haddad FS (2016) The epidemiology of failure in total knee arthroplasty: avoiding your next revision. Bone Joint J 98-B(1 Suppl A):105–112

    Article  CAS  PubMed  Google Scholar 

  22. Kim YH, Park JW, Kim JS (2016) A comparison of 5 models of total knee arthroplasty in young patients. J Arthroplast 31(5):994–999

    Article  Google Scholar 

  23. Kraemer WJ, Harrington IJ, Hearn TC (1995) Micromotion secondary to axial, torsional, and shear loads in two models of cementless tibial components. J Arthroplasty 10(2):227–235

    Article  CAS  PubMed  Google Scholar 

  24. Lattmann T, Meier C, Dietrich M, Forberger J, Platz A (2011) Results of volar locking plate osteosynthesis for distal radial fractures. J Trauma 70(6):1510–1518

    Article  PubMed  Google Scholar 

  25. Lee JH, Barnett SL, Patel JJ, Nassif NA, Cummings DJ, Gorab RS (2016) Ten Year Follow-Up of Gap Balanced, Rotating Platform Total Knee Arthroplasty in Patients Under 60 Years of Age. J Arthroplasty 31(1):132–136

    Article  PubMed  Google Scholar 

  26. Lee RW, Volz RG, Sheridan DC (1991) The role of fixation and bone quality on the mechanical stability of tibial knee components. Clin Orthop Relat Res 273:177–183

    PubMed  Google Scholar 

  27. Lee TQ, Barnett SL, Kim WC (1999) Effects of screw types in cementless fixation of tibial tray implants: stability and strength assessment. Clin Biomech (Bristol, Avon) 14(4):258–264

    Article  CAS  Google Scholar 

  28. Lewis PL, Rorabeck CH, Bourne RB (1995) Screw osteolysis after cementless total knee replacement. Clin Orthop Relat Res 321:173–177

    PubMed  Google Scholar 

  29. Long WJ, Bryce CD, Hollenbeak CS, Benner RW, Scott WN (2014) Total knee replacement in young, active patients: long-term follow-up and functional outcome: a concise follow-up of a previous report. J Bone Joint Surg Am 96(18):e159

    Article  PubMed  Google Scholar 

  30. Luring C, Perlick L, Trepte C et al (2006) Micromotion in cemented rotating platform total knee arthroplasty: cemented tibial stem versus hybrid fixation. Arch Orthop Trauma Surg 126(1):45–48

    Article  CAS  PubMed  Google Scholar 

  31. Meftah M, White PB, Ranawat AS, Ranawat CS (2016) Long-term results of total knee arthroplasty in young and active patients with posterior stabilized design. Knee 23(2):318–321

    Article  PubMed  Google Scholar 

  32. Molt M, Toksvig-Larsen S (2015) 2-year follow-up report on micromotion of a short tibia stem. A prospective, randomized RSA study of 59 patients. Acta Orthop 86(5):594–598

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3(1):51–61

    Article  CAS  PubMed  Google Scholar 

  34. Nelissen RG, Valstar ER, Rozing PM (1998) The effect of hydroxyapatite on the micromotion of total knee prostheses. A prospective, randomized, double-blind study. J Bone Joint Surg Am 80(11):1665–1672

    CAS  PubMed  Google Scholar 

  35. Nilsson K, Kärrholm J, Carlsson L, Dalén T (1999) Hydroxyapatite coating versus cemented fixation of the tibial component in total knee arthroplasty: prospective randomized comparison of hydroxyapatite-coated and cemented tibial components with 5-year follow-up using radiostereometry. J Arthroplasty 14(1):9–20

    Article  CAS  PubMed  Google Scholar 

  36. Nilsson KG, Henricson A, Norgren B, Dalen T (2006) Uncemented HA-coated implant is the optimum fixation for TKA in the young patient. Clin Orthop Relat Res 448:129–139

    Article  PubMed  Google Scholar 

  37. Normand X, Pinçon JL, Ragot JM, Verdier R, Aslanian T (2015) Prospective study of the cementless “New Wave” total knee mobile-bearing arthroplasty: 8-year follow-up. Eur J Orthop Surg Traumatol 25(2):349–354

    Article  PubMed  Google Scholar 

  38. Obert L, Loisel F, Huard S et al (2015) Plate fixation of distal radius fracture and related complications. Eur J Orthop Surg Traumatol 25(3):457–464

    Article  PubMed  Google Scholar 

  39. Onsten I, Nordqvist A, Carlsson AS, Besjakov J, Shott S (1998) Hydroxyapatite augmentation of the porous coating improves fixation of tibial components. A randomised RSA study in 116 patients. J Bone Joint Surg Br 80(3):417–425

    Article  CAS  Google Scholar 

  40. Otto R, Moed B, Bledsoe J (2009) Biomechanical comparison of polyaxial-type locking plates and a fixed-angle locking plate for internal fixation of distal femur fractures. J Orthop Trauma 23(9):645–652

    Article  PubMed  Google Scholar 

  41. Parratte S, Ollivier M, Lunebourg A, Verdier N, Argenson JN (2016) Do stemmed tibial components in total knee arthroplasty improve outcomes in patients with obesity? Clin Orthop Relat Res. doi:10.1007/s11999-016-4791-6

    Google Scholar 

  42. Pijls BG, Nieuwenhuijse MJ, Schoones JW, Middeldorp S, Valstar ER, Nelissen RG (2012) RSA prediction of high failure rate for the uncoated Interax TKA confirmed by meta-analysis. Acta Orthop 83(2):142–147

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pijls BG, Valstar ER, Kaptein BL, Fiocco M, Nelissen RG (2012) The beneficial effect of hydroxyapatite lasts: a randomized radiostereometric trial comparing hydroxyapatite-coated, uncoated, and cemented tibial components for up to 16 years. Acta Orthop 83(2):135–141

    Article  PubMed  PubMed Central  Google Scholar 

  44. Regnér L, Carlsson L, Kärrholm J, Herberts P (2000) Tibial component fixation in porous- and hydroxyapatite-coated total knee arthroplasty: a radiostereo metric evaluation of migration and inducible displacement after 5 years. J Arthroplasty 15(6):681–689

    Article  PubMed  Google Scholar 

  45. Ries C, Heinichen M, Dietrich F, Jakubowitz E, Sobau C, Heisel C (2013) Short-keeled cemented tibial components show an increased risk for aseptic loosening. Clin Orthop Relat Res 471(3):1008–1013

    Article  PubMed  Google Scholar 

  46. Röderer G, Erhardt J, Graf M, Kinzl L, Gebhard F (2010) Clinical results for minimally invasive locked plating of proximal humerus fractures. J Orthop Trauma 24(7):400–406

    Article  PubMed  Google Scholar 

  47. Ruchholtz S, El-Zayat B, Kreslo D et al (2013) Less invasive polyaxial locking plate fixation in periprosthetic and peri-implant fractures of the femur–A prospective study of 41 patients. Injury 44(2):239–248

    Article  PubMed  Google Scholar 

  48. Ryd L, Albrektsson BE, Carlsson L et al (1995) Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg Br 77(3):377–383

    CAS  PubMed  Google Scholar 

  49. Ryd L, Carlsson L, Herberts P (1993) Micromotion of a noncemented tibial component with screw fixation. An in vivo roentgen stereophotogrammetric study of the Miller-Galante prosthesis. Clin Orthop Relat Res 295:218–225

    PubMed  Google Scholar 

  50. Ryd L, Lindstrand A, Stenstrom A, Selvik G (1990) Porous coated anatomic tricompartmental tibial components. The relationship between prosthetic position and micromotion. Clin Orthop Relat Res 251:189–197

    PubMed  Google Scholar 

  51. Schlegel UJ, Bruckner T, Schneider M, Parsch D, Geiger F, Breusch SJ (2015) Surface or full cementation of the tibial component in total knee arthroplasty: a matched-pair analysis of mid- to long-term results. Arch Orthop Trauma Surg 135(5):703–708

    Article  CAS  PubMed  Google Scholar 

  52. Skwara A, Figiel J, Knott T, Paletta J, Fuchs-Winkelmann S, Tibesku C (2009) Primary stability of tibial components in TKA: in vitro comparison of two cementing techniques. Knee Surg Sports Traumatol Arthrosc 17(10):1199–1205

    Article  PubMed  Google Scholar 

  53. Stem E, Hicks B, Roper W (2008) Screw osteolysis in the cementless anatomic modular knee arthroplasty. Orthopedics 31(1):77

    Article  PubMed  Google Scholar 

  54. Sumner DR, Berzins A, Turner TM, Igloria R, Natarajan RN (1994) Initial in vitro stability of the tibial component in a canine model of cementless total knee replacement. J Biomech 27(7):929–939

    Article  CAS  Google Scholar 

  55. Sumner DR, Turner TM, Dawson D, Rosenberg AG, Urban RM, Galante JO (1994) Effect of pegs and screws on bone ingrowth in cementless total knee arthroplasty. Clin Orthop Relat Res 309:150–155

    PubMed  Google Scholar 

  56. Valstar ER, Gill R, Ryd L, Flivik G, Borlin N, Karrholm J (2005) Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 76(4):563–572

    Article  PubMed  Google Scholar 

  57. Volz RG, Nisbet JK, Lee RW, McMurtry MG (1988) The mechanical stability of various noncemented tibial components. Clin Orthop Relat Res 226:38–42

    PubMed  Google Scholar 

  58. Wahnert D, Hoffmeier KL, von Oldenburg G, Frober R, Hofmann GO, Muckley T (2010) Internal fixation of type-C distal femoral fractures in osteoporotic bone. J Bone Joint Surg Am 92(6):1442–1452

    Article  PubMed  Google Scholar 

  59. Walker PS, Hsu HP, Zimmerman RA (1990) A comparative study of uncemented tibial components. J Arthroplasty 5(3):245–253

    Article  CAS  PubMed  Google Scholar 

  60. Wilkens K, Curtiss S, Lee M (2008) Polyaxial locking plate fixation in distal femur fractures: a biomechanical comparison. J Orthop Trauma 22(9):624–628

    Article  PubMed  Google Scholar 

  61. Wilson DA, Richardson G, Hennigar AW, Dunbar MJ (2012) Continued stabilization of trabecular metal tibial monoblock total knee arthroplasty components at 5 years-measured with radiostereometric analysis. Acta Orthop 83(1):36–40

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yamanaka H, Goto K, Suzuki M (2012) Clinical results of Hi-tech Knee II total knee arthroplasty in patients with rheumatoid arthritis: 5- to 12-year follow-up. J Orthop Surg Res 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yoshii I, Whiteside L, Milliano M, White S (1992) The effect of central stem and stem length on micromovement of the tibial tray. J Arthroplasty 7(Suppl):433–438

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank the Anatomical Institute of the University of Düsseldorf for donating the tibia specimen. Furthermore, we thank our biomechanical engineers for constructing the prototype used in this study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Paletta.

Additional information

C. Benzing and A. Skwara contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzing, C., Skwara, A., Figiel, J. et al. Initial stability of a new cementless fixation method of a tibial component with polyaxial locking screws: a biomechanical in vitro examination. Arch Orthop Trauma Surg 136, 1309–1316 (2016). https://doi.org/10.1007/s00402-016-2517-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2517-6

Keywords

Navigation