Skip to main content
Log in

Biomechanical effect of graded minimal-invasive decompression procedures on lumbar spinal stability

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Decompression surgery represents the standard operative treatment for lumbar spinal stenosis, but this procedure is often combined with fusion surgery. It is still discussed whether minimal-invasive decompression procedures are sufficient and if they compromise spinal stability as well. The aim of this study was to analyze the effects of different minimal-invasive decompression procedures on the range of motion (ROM) of the decompressed and adjacent segments under preload conditions.

Methods

Fourteen fresh frozen human cadaver lumbar spines (L2–L5) were tested in a spinal testing device with a moment of 7.5 N m in flexion/extension, lateral bending and rotation with and without a preload. The ROM of the decompressed segment L3/4 and the adjacent segments L2/L3 and L4/L5 was measured intact and after creating a gradual defect with resection of the interspinous ligament (ISL), bilateral undercutting decompression, detachment of the supraspinous ligament (SSL) and bilateral medial facetectomy.

Results

The resection of the ISL had no significant effect on the ROM of all segments. Undercutting decompression showed a significant increase in the ROM of all segments during flexion/extension and lateral bending. The detachment of the SSL caused a significant increase of ROM during flexion/extension in the instrumented and adjacent segments. After bilateral medial facetectomy, a decrease of ROM was observed in all directions of motion except flexion/extension with preload.

Conclusions

The results support minimal-invasive procedures for the preservation of spinal stability. Therefore, surgeons can determine which grade of decompression procedure can be performed in the individual patient without requiring additional fusion to maintain spinal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taylor VM, Deyo RA, Cherkin DC et al (1994) Low back pain hospitalization: recent United States trends and regional variations. Spine 19(11):1207–1212

    PubMed  CAS  Google Scholar 

  2. Deyo RA, Gray DT, Kreuter W et al (2005) United States trends in lumbar fusion surgery for degenerative conditions. Spine 30(12):1441–1445

    Article  PubMed  Google Scholar 

  3. Irwin ZN, Hilibrand A, Gustavel M et al (2005) Variation in surgical decision making for degenerative spinal disorders. Part I: lumbar spine. Spine 30(19):2208–2213

    Article  PubMed  Google Scholar 

  4. Katz JN, Lipson SJ, Lew RA et al (1997) Lumbar laminectomy alone or with instrumented or noninstrumented arthrodesis in degenerative lumbar spinal stenosis: patient selection, costs, and surgical outcomes. Spine 22(10):1123–1131

    Article  PubMed  CAS  Google Scholar 

  5. Airaksinen O, Herno A, Turunen V et al (1997) Surgical outcome of 438 patients treated surgically for lumbar spinal stenosis. Spine 22:2278–2282

    Article  PubMed  CAS  Google Scholar 

  6. Atlas SJ, Deyo RA, Keller RB et al (1996) The Maine Lumbar Spine Study, Part III. 1-year outcomes of surgical and nonsurgical management of lumbar spinal stenosis. Spine 21:1787–1795

    Article  PubMed  CAS  Google Scholar 

  7. Iguchi T, Kurihara A, Nakayama J et al (2000) Minimum 10-year outcome of decompressive laminectomy for degenerative lumbar spinal stenosis. Spine 25:1754–1759

    Article  PubMed  CAS  Google Scholar 

  8. Katz JN, Lipson SJ, Larson MG et al (1991) The outcome of decompressive laminectomy for degenerative lumbar stenosis. J Bone Joint Surg Am 73:809–816

    PubMed  CAS  Google Scholar 

  9. Johnsson KE, Willner S, Johnsson K (1986) Postoperative instability after decompression for lumbar spinal stenosis. Spine 11:107–110

    Article  PubMed  CAS  Google Scholar 

  10. Nakai O, Ookawa A, Yamaura I (1991) Long-term roentgenographic and functional changes in patients who were treated with wide fenestration for central lumbar stenosis. J Bone Joint Surg Am 73:1184–1191

    PubMed  CAS  Google Scholar 

  11. Detwiler PW, Spetzler CB, Taylor SB et al (2003) Biomechanical comparison of facet-sparing laminectomy and Christmas tree laminectomy. J Neurosurg 99(2 Suppl):214–220

    PubMed  Google Scholar 

  12. Hamasaki T, Tanaka N, Kim J et al (2009) Biomechanical assessment of minimally invasive decompression for lumbar spinal canal stenosis: a cadaver study. J Spinal Disord Tech 22(7):486–491

    Article  PubMed  Google Scholar 

  13. Quint U, Wilke HJ, Loer F et al (1998) Functional sequelae of surgical decompression of the lumbar spine—a biomechanical study in vitro. Z Orthop 136(4):350–357

    Article  PubMed  CAS  Google Scholar 

  14. Sharma M, Langrana NA, Rodriguez J (1995) Role of ligaments and facets in lumbar spinal stability. Spine 20:887–900

    Article  PubMed  CAS  Google Scholar 

  15. Zander T, Rohlmann A, Klöckner C et al (2003) Influence of graded facetectomy and laminectomy on spinal biomechanics. Eur Spine J 12(4):427–434

    Article  PubMed  CAS  Google Scholar 

  16. Deyo RA, Nachemson A, Mirza SK (2004) Spinal-fusion surgery—the case for restraint. N Engl J Med 350:722–726

    Article  PubMed  CAS  Google Scholar 

  17. Ciol MA, Deyo RA, Howell E et al (1996) An assessment of surgery for spinal stenosis: time trends, geographic variations, complications, and reoperations. J Am Geriatr Soc 44(3):285–290

    PubMed  CAS  Google Scholar 

  18. Fischgrund JS, Mackay M, Herkowitz HN et al (1997) Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine 22(24):2807–2812

    Article  PubMed  CAS  Google Scholar 

  19. Fritzell P, Hagg O, Nordwall A, Swedish Lumbar Spine Study Group (2003) Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. Eur Spine J 12(2):178–189

    PubMed  Google Scholar 

  20. Ekman P, Möller H, Shalabi A, Yu YX, Hedlund R (2009) A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration. Eur Spine J 18(8):1175–1186

    Article  PubMed  Google Scholar 

  21. Lee CS, Hwang CJ, Lee SW, Ahn YJ, Kim YT, Lee DH, Lee MY (2009) Risk factors for adjacent segment disease after lumbar fusion. Eur Spine J 18(11):1637–1643

    Article  PubMed  Google Scholar 

  22. Yang JY, Lee JK, Song HS (2008) The impact of adjacent segment degeneration on the clinical outcome after lumbar spinal fusion. Spine 33:503–507

    Article  PubMed  Google Scholar 

  23. Delank KS, Eysel P, Zöllner J et al (2002) Undercutting decompression versus laminectomy. Clinical and radiological results of a prospective controlled trial. Orthopade 31(11):1048–1056

    Article  PubMed  CAS  Google Scholar 

  24. Kleeman TJ, Hiscoe AC, Berg EE (2000) Patient outcomes after minimally destabilizing lumbar stenosis decompression: the “Port-Hole” technique. Spine 25:865–870

    Article  PubMed  CAS  Google Scholar 

  25. Thomé C, Zevgaridis D, Leheta O et al (2005) Outcome after less-invasive decompression of lumbar spinal stenosis: a randomized comparison of unilateral laminotomy, bilateral laminotomy, and laminectomy. J Neurosurg Spine 3(2):129–141

    Article  PubMed  Google Scholar 

  26. Tsai RY, Yang RS, Bray RS Jr (1998) Microscopic laminotomies for degenerative lumbar spinal stenosis. J Spinal Disord 11:389–394

    Article  PubMed  CAS  Google Scholar 

  27. Weiner BK, Walker M, Brower RS et al (1999) Microdecompression for lumbar spinal canal stenosis. Spine 24:2268–2272

    Article  PubMed  CAS  Google Scholar 

  28. Yamazaki K, Yoshida S, Ito T et al (2002) Postoperative outcome of lumbar spinal canal stenosis after fenestration: correlation with changes in intradural and extradural tube on magnetic resonance imaging. J Orthop Surg 10:136–143

    CAS  Google Scholar 

  29. Guiot BH, Khoo LT, Fessler RG (2002) A minimally invasive technique for decompression of the lumbar spine. Spine 27:432–438

    Article  PubMed  Google Scholar 

  30. Kong DS, Kim ES, Eoh W (2007) One-year outcome evaluation after interspinous implantation for degenerative spinal stenosis with segmental instability. J Korean Med Sci 22:330–335

    Article  PubMed  Google Scholar 

  31. Wilke HJ, Drumm J, Häussler K et al (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17(8):1049–1056

    Article  PubMed  Google Scholar 

  32. Abumi K, Panjabi MM, Kramer KM et al (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine 15(11):1142–1147

    Article  PubMed  CAS  Google Scholar 

  33. Fuchs PD, Lindsey DP, Hsu KY et al (2005) The use of an interspinous implant in conjunction with a graded facetectomy procedure. Spine 30(11):1266–12672

    Article  PubMed  Google Scholar 

  34. Schulte TL, Hurschler C, Haversath M et al (2008) The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J 17:1057–1065

    Article  PubMed  Google Scholar 

  35. Hartmann F, Gercek E, Dietz SO et al (2011) Development of a multisegmental test body to calibrate and validate studies with spinal testing devices with follower load. Biomed Tech (Berl) 56(2):99–105

    Article  Google Scholar 

  36. Hartmann F, Dietz SO, Hely H et al (2011) Biomechanical effect of different interspinous devices on lumbar spinal range of motion under preload conditions. Arch Orthop Trauma Surg 131(7):917–926

    Article  PubMed  Google Scholar 

  37. Goel VK, Panjabi MM, Patwardhan AG et al (2006) American Society for Testing and Materials. Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109

    Article  PubMed  Google Scholar 

  38. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  PubMed  CAS  Google Scholar 

  39. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134

    Article  PubMed  CAS  Google Scholar 

  40. Dreischarf M, Zander T, Bergmann G et al (2010) A non-optimized follower load path may cause considerable intervertebral rotations. J Biomech 43(13):2625–2628

    Article  PubMed  Google Scholar 

  41. Patwardhan AG, Havey RM, Meade KP et al (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24(10):1003–1009

    Article  PubMed  CAS  Google Scholar 

  42. Anasetti F, Galbusera F, Aziz HN et al (2010) Spine stability after implantation of an interspinous device: an in vitro and finite element biomechanical study. J Neurosurg Spine 13(5):568–575

    Article  PubMed  Google Scholar 

  43. Tai CL, Hsieh PH, Chen WP et al (2008) Biomechanical comparison of lumbar spine instability between laminectomy and bilateral laminotomy for spinal stenosis syndrome—an experimental study in porcine model. BMC Musculoskelet Disord 9:84

    Article  PubMed  Google Scholar 

  44. Lee KK, Teo EC, Qiu TX et al (2004) Effect of facetectomy on lumbar spinal stability under sagittal plane loadings. Spine 29(15):1624–1631

    Article  PubMed  Google Scholar 

  45. Chen LH, Lai PL, Tai CL, Niu C, Fu TS, Chen WJ (2006) The effect of interspinous ligament integrity on adjacent segment instability after lumbar instrumentation and laminectomy—an experimental study in porcine model. Biomed Mater Eng 16:261–267

    PubMed  Google Scholar 

  46. Sanderson PL, Getty CJM (1996) Long-term results of partial undercutting facetectomy for lumbar lateral recess stenosis. Spine 1:1352–1356

    Article  Google Scholar 

  47. Goel VK, Winterbottom JM, Weinstein JN et al (1987) Load sharing among spinal elements of a motion segment in extension and lateral bending. J Biomech Eng 109(4):291–297

    Article  PubMed  CAS  Google Scholar 

  48. Little JS, Khalsa PS (2005) Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics, and facet joint capsule strain. Ann Biomed Eng 33(3):391–401

    Article  PubMed  Google Scholar 

  49. Serhan HA, Varnavas G, Dooris AP et al (2007) Biomechanics of the posterior lumbar articulating elements. Neurosurg Focus 22(1):E1

    Article  PubMed  Google Scholar 

  50. Natarajan RN, Andersson GB, Patwardhan AG et al (1999) Study on effect of graded facetectomy on change in lumbar motion segment torsional flexibility using three-dimensional continuum contact representation for facet joints. J Biomech Eng 121(2):215–221

    Article  PubMed  CAS  Google Scholar 

  51. Schmidt H, Heuer F, Claes L et al (2008) The relation between the instantaneous center of rotation and facet joint forces—a finite element analysis. Clin Biomech (Bristol, Avon) 23(3):270–278

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Institute of Medical Biostatistics, Epidemiology and Informatics of the University Medical Center of the Johannes Gutenberg University Mainz for their help with the statistical analysis in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, F., Janssen, C., Böhm, S. et al. Biomechanical effect of graded minimal-invasive decompression procedures on lumbar spinal stability. Arch Orthop Trauma Surg 132, 1233–1239 (2012). https://doi.org/10.1007/s00402-012-1543-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1543-2

Keywords

Navigation