Skip to main content

Advertisement

Log in

The efficacy of erythropoietin on acute spinal cord injury. An experimental study on a rat model

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The accumulated knowledge of erythropoietin (EPO) interaction in neural injury has led to potentially novel therapeutic strategies. Previous experimental studies of recombinant human EPO (rhEPO) administration have shown favorable results after central and peripheral neural injury. In the present study we used the aneurysmal clip model to evaluate the efficacy of two different regimes of rhEPO administration on the functional outcome after severe acute spinal cord injury (ASCI).

Materials and methods

Thirty rats were operated on with posterior laminectomy at thoracic 10th vertebra. Spinal cord trauma produced by extradural placement of the aneurysm clip, for 1 min. Animals were divided into three groups; the first group received a low total EPO dose (EPO-L), (2 doses of 1,000 IU each s.c.). The second group was administered the high total EPO dose (EPO-H), (14 doses of 1,000 IU each s.c.), and the third was the Control group, which received normal saline in the same time fashion with EPO-H group. Follow-up was for 6 weeks. Estimation of the functional progress of each rat was calculated using the locomotor rating scale of Basso et al, with a range from 0 to 21.

Results

After surgery the animals suffered paraplegia with urinary disturbances. Rats that received EPO demonstrated statistically significant functional improvement compared to the Control group, throughout study interval. On the last follow-up at 6 weeks the EPO-L rats achieved a mean score 17.3 ± 1.15, the EPO-H 14.7 ± 1.82, and the control group 8.2 ± 0.78. Comparison between the two EPO groups reveals superior final outcome of the group treated with lower total dose.

Conclusion

Our study supports current knowledge, that EPO administration has a positive effect on functional recovery after experimental ASCI. These data reflect the positive impact of EPO on the pathophysiologic cascade of secondary neural damage. However, we observed a dose-related effect on functional recovery. Interestingly, large doses do not seem to favor the neurological recovery as lower doses do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allen AR (1911) Surgery for experimental lesions of spinal cord equivalent to crush injury of fracture dislocation of spinal column. A preliminary report. JAMA 57:878–880

    Google Scholar 

  2. Arishima Y, Takao S, Ichiro Y, Kazunori Y, Setsuro K (2006) Preventive effect of erythropoietin on spinal cord cell apoptosis following acute traumatic injury in rats. Spine 31:2432–2438

    Article  PubMed  Google Scholar 

  3. Baptiste D, Fehlings M (2006) Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23:318–334

    Article  PubMed  Google Scholar 

  4. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  PubMed  CAS  Google Scholar 

  5. Bianchi R, Buyukakilli B, Brines M et al (2004) Erythropoietin both protect from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci 101:823–828

    Article  PubMed  CAS  Google Scholar 

  6. Bracken MB, Shepard MJ, Collins WF et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. N Engl J Med 322(20):1405–1411

    Article  PubMed  CAS  Google Scholar 

  7. Bracken MB, Shepard MJ, Holford TR et al (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604

    Article  PubMed  CAS  Google Scholar 

  8. Brines M, Cerami A (2006) Discovering erythropoietin’s extra-hematopoietic functions: biology and clinical promise. Kidney Int 70:246–250

    Article  PubMed  CAS  Google Scholar 

  9. Brines ML, Ghezzi P, Keenam S et al (2000) Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci 97:10526–10531

    Article  PubMed  CAS  Google Scholar 

  10. Calvillo L, Latini R, Kajstura J et al (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci 100:4802–4806

    Article  PubMed  CAS  Google Scholar 

  11. Celik M, Gökmen N, Erbayraktar S et al (2002) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci 99:2258–2263

    Article  PubMed  CAS  Google Scholar 

  12. Cetin A, Nas K, Buyukbayram H, Ceviz A, Olmez G (2006) The effects of systemically administered methylprednisolone and recombinant human erythropoietin after acute spinal cord compressive injury in rats. Eur Spine J 15:1539–1544

    Article  PubMed  Google Scholar 

  13. Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kB signalling cascades. Nature 412:641–647

    Article  PubMed  CAS  Google Scholar 

  14. Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6:712–724

    Article  PubMed  CAS  Google Scholar 

  15. Eid T, Brines M (2002) Recombinant human erythropoietin for neuroprotection: what is the evidence? Clin Breast Cancer 3(Suppl 3):109–115

    Article  Google Scholar 

  16. Gassmann M, Heinicke K, Soliz J et al (2003) Non-erythroid functions of erythropoietin. Adv Exp Med Biol 543:323–330

    PubMed  CAS  Google Scholar 

  17. Geisler FH, Coleman WP, Grieco G et al (2001) The Sygen multi-center acute spinal cord injury study. Spine 26(Suppl 24):87–98

    Article  Google Scholar 

  18. Gorio A, Gokmen N, Erbayraktar S et al (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci 99:9450–9455

    Article  PubMed  CAS  Google Scholar 

  19. Gorio A, Madaschi L, Di Stefano B et al (2005) Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc Natl Acad Sci 102:16379–16384

    Article  PubMed  CAS  Google Scholar 

  20. Grasso G, Sfacteria A, Erbayraktar S et al (2006) Amelioration of spinal cord compressive injury by pharmacological preconditioning with erythropoietin and a nonerythropoietic erythropoietin derivative. J Neurosurg Spine 4:310–318

    Article  PubMed  Google Scholar 

  21. Grasso G, Sfacteria A, Passalacqua M et al (2005) Erythropoietin and erythropoietin receptor expression after experimental spinal cord injury encourages therapy by exogenous erythropoietin. Neurosurgery 56:821–827

    Article  PubMed  Google Scholar 

  22. Harada N, Taoka Y, Okajima K (2006) Role of prostacyclin in the development of compression trauma-induced spinal cord injury in rats. J Neurotrauma 23:1739–1749

    Article  PubMed  Google Scholar 

  23. Jacobson LO, Goldwasser E, Fried W, Plzak L (1957) Role of the kidney in erythropoiesis. Nature 179:633

    Article  PubMed  CAS  Google Scholar 

  24. Jelkmann W (1994) Biology of erythropoietin. Clin Invest 72(Suppl 6):3–10

    CAS  Google Scholar 

  25. Kaptanoglu E, Solaroglu I, Okutan O, Surucu HS, Akbiyik F, Beskonakli E (2004) Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings. Neurosurg Rev 27:113–120

    Article  PubMed  Google Scholar 

  26. Kaufman JS, Reda DJ, Fye CL et al (1998) Subcutaneous compared with intravenous epoeitin in patients receiving hemodialysis. Department of Veterans Affairs Cooperative Study Group on erythropoietin in hemodialysis patients. N Engl J Med 339:578–583

    Article  PubMed  CAS  Google Scholar 

  27. Khan M, Griebel R, Rozdilsky B, Politis M (1985) Hemorrhagic changes in experimental spinal cord injury models. Can J Neurol Sci 12:259–262

    PubMed  CAS  Google Scholar 

  28. Leist M, Ghezzi P, Grasso G (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    Article  PubMed  CAS  Google Scholar 

  29. Lipton S (2004) Erythropoietin for neurologic protection and diabetic neuropathy. N Engl J Med 350(24):2516–2517

    Article  PubMed  CAS  Google Scholar 

  30. Lykissas MG, SAkellariou E, Vekris MD et al (2007) Axonal regeneration stimulated by erythropoietin: an experimental study in rats. J Neurosci Methods 164:107–115

    Article  PubMed  CAS  Google Scholar 

  31. Masuda S, Nagao M, Sasaki R (1999) Erythropoietic, neurotrophic, and angiogenic functions of erythropoietin and regulation of erythropoietin production. Int J Hematol 70:1–6

    PubMed  CAS  Google Scholar 

  32. Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M, Sasaki R (1994) A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem 269:19488–19493

    PubMed  CAS  Google Scholar 

  33. Minoda Y, Sakawa A, Fukuoka S, Tada K, Takaoka K (2004) Blood management for patients with hemoglobin level lower than 130 g/l in total knee arthroplasty. Arch Orthop Trauma Surg 124(5):317–319

    Article  PubMed  Google Scholar 

  34. Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116

    Article  PubMed  CAS  Google Scholar 

  35. Rivlin AS, Tator CH (1978) Effect of duration of acute spinal cord compression in a new acute cord injury in the rat. Surg Neurol 10:38–43

    PubMed  CAS  Google Scholar 

  36. Sasaki R, Masuda S, Nagao M (2000) Erythropoietin: multiple physiological functions and regulation of biosynthesis. Biosci Biotechnol Biochem 64:1775–1793

    Article  PubMed  CAS  Google Scholar 

  37. Sayer FT, Kronvall E, Nilsson OG (2006) Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine J 6:335–343

    Article  PubMed  Google Scholar 

  38. Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg Spine 94:245–256

    Article  CAS  Google Scholar 

  39. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26(Suppl 24):2–12

    Article  Google Scholar 

  40. Sekiguchi Y, Kikuchi S, Myers RR., Campana WM (2003) Erythropoietin inhibits spinal neuronal apoptosis and pain following nerve root crush. Spine 28:2577–2584

    Article  PubMed  Google Scholar 

  41. Shi R, Borgens RB (2000) Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 29:633–643

    Article  PubMed  CAS  Google Scholar 

  42. Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743

    PubMed  CAS  Google Scholar 

  43. Siren AL, Knerlich F, Poser W, Gleiter CH, Bruck W, Ehrenreich H (2001) Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol (Berl) 101:271–276

    CAS  Google Scholar 

  44. Stohlawetz PJ, Dzirlo L, Hergovich N (2000) Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood 95:2983–2989

    PubMed  CAS  Google Scholar 

  45. Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 5:407–413

    Article  PubMed  CAS  Google Scholar 

  46. Wells JE, Hurlbert RJ, Fehlings MG et al (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126:1628–1637

    Article  PubMed  Google Scholar 

  47. Wolf RF, Peng J, Friese P, Gilmore LS, Burstein SA, Dale GL (1997) Erythropoietin administration increases production and reactivity of platelets in dogs. Thromb Haemost 78:1505–1509

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios A. Kontogeorgakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontogeorgakos, V.A., Voulgaris, S., Korompilias, A.V. et al. The efficacy of erythropoietin on acute spinal cord injury. An experimental study on a rat model. Arch Orthop Trauma Surg 129, 189–194 (2009). https://doi.org/10.1007/s00402-008-0594-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0594-x

Keywords

Navigation