Skip to main content

Advertisement

Log in

Regional mosaic genomic heterogeneity in the elderly and in Alzheimer’s disease as a correlate of neuronal vulnerability

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by fibrillary aggregates of Aβ peptide and tau protein. The distribution of these pathological hallmarks throughout the brain is not random; it follows a predictive pattern that is used for pathological staging. However, most etiopathogenetic concepts, irrespective of whether they focus on Aβ or tau pathology, leave a key question unanswered: what is the explanation for the different vulnerabilities of brain regions in AD? The pattern of regional progression of neurofibrillary degeneration in AD to some extent inversely recapitulates ontogenetic and phylogenetic brain development. Accordingly, degeneration preferentially affects brain areas that have recently been acquired or restructured during anthropoid evolution, which means that the involvement of a neurodevelopmental mechanism is highly likely. Since evolutionary expansion of the neocortex is based on a substantial extension of the mitotic activity of progenitor cells, we propose a conceptual link between neurogenesis in anthropoid primates and a higher risk of accumulating mitotic errors that give rise to genomic aberrations commonly referred to as DNA content variation (DCV). If increased rates of DCV make neurons more vulnerable to AD-related pathology, one might expect there to be a higher rate of DCV in areas that are affected very early during the course of AD, as compared to areas which are hardly affected or are affected only during the most advanced stages. Therefore, in the present study, we comparatively analyzed the DCV in five different cortical areas that are affected during the early stage (entorhinal cortex), the intermediate stage (temporal, frontal, and parietal association cortex), and the late stage (primary sensory occipital cortex) of AD in both normal elderly subjects and AD patients. On average, we observed about 10 % neuronal mosaic DCV in the normal elderly and a two- to threefold increase in DCV in AD patients. We were able to demonstrate, moreover, that the neuronal DCV in the cerebral cortex of the normal elderly as well as the increased neuronal DCV in AD patients are not randomly distributed but instead show systematic regional differences which correspond to differences in vulnerability. These findings provide additional evidence that mosaic genomic heterogeneity may play a key role in AD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer: disease: recommendations from the National Institute on Aging—Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    Article  PubMed Central  PubMed  Google Scholar 

  2. Arendt T (2001) Alzheimer’s disease as a disorder of mechanisms underlaying structural brain self-organization. Neuroscience 102:723–765

    Article  CAS  PubMed  Google Scholar 

  3. Arendt T (2008) Differentiation and de-differentiation—neuronal cell cycle regulation during development and age-related neurodegenerative disorders. In: Lajtha A, Perez-Polo JR, Rossner S (eds) Handbook of neurochemistry and molecular neurobiology. Development and aging changes in the nervous system. Springer, Berlin, pp 157–213

    Chapter  Google Scholar 

  4. Arendt T (2012) Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol 46:125–135

    Article  CAS  PubMed  Google Scholar 

  5. Arendt T, Brückner MK, Gertz HJ, Marcova L (1998) Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain. Neuroscience 83(4):991–1002

    Article  CAS  PubMed  Google Scholar 

  6. Arendt T, Brückner MK, Mosch B, Lösche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177:15–20

    Article  PubMed Central  PubMed  Google Scholar 

  7. Arendt T, Mosch B, Morawski M (2009) Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci 10:1609–1627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Arnoldus EP, Peters AC, Bots GT, Raap AK, van der Ploeg M (1989) Somatic pairing of chromosome 1 centromeres in interphase nuclei of human cerebellum. Hum Genet 83:231–234

    Article  CAS  PubMed  Google Scholar 

  9. Blaschke AJ, Weiner JA, Chun J (1998) Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 396:39–50

    Article  CAS  PubMed  Google Scholar 

  10. Boeras DI, Granic A, Padmanabhan J, Crespo NC, Rojiani AM, Potter H (2008) Alzheimer’s presenilin 1 causes chromosome missegregation and aneuploidy. Neurobiol Aging 29:319–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed Central  PubMed  Google Scholar 

  12. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  13. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92(2):197–201

    Article  CAS  PubMed  Google Scholar 

  14. Bushman DM, Chun J (2013) The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 24(4):357–369

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bushman DM, Kaeser GE, Siddoway B, Westra JW, Rivera RR, Rehen SK, Yung YC, Chun J (2015) Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer’s disease brains. Elife 4:e05116

  16. Copani A, Hoozemans JJ, Caraci F, Calafiore M, Van Haastert ES, Veerhuis R, Rozemuller AJ, Aronica E, Sortino MA, Nicoletti F (2006) DNA polymerase-beta is expressed early in neurons of Alzheimer’s disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid. J Neurosci 26:10949–10957

    Article  CAS  PubMed  Google Scholar 

  17. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127

    Article  PubMed  Google Scholar 

  18. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746

    Article  PubMed  Google Scholar 

  19. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    Article  PubMed  Google Scholar 

  20. Fischer HG, Morawski M, Brückner MK, Mittag A, Tarnok A, Arendt T (2012) Changes in neuronal DNA content variation in the human brain during aging. Aging Cell 11:628–633

    Article  CAS  PubMed  Google Scholar 

  21. Flechsig P (1896) Gehirn und Seele. Veit & Comp, Leipzig

    Google Scholar 

  22. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state (a practical method for grading the state of patients for the clinician). J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  23. Gärtner U, Holzer M, Heumann R, Arendt T (1995) Induction of p21ras in Alzheimer pathology. NeuroReport 6(10):1441–1444

    Article  PubMed  Google Scholar 

  24. Geller LN, Potter H (1999) Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol Dis 6:167–179

    Article  CAS  PubMed  Google Scholar 

  25. Granic A, Padmanabhan J, Norden M, Potter H (2010) Alzheimer abeta peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP. Mol Biol Cell 21:511–520

  26. Grunwald M, Busse F, Hensel A, Kruggel F, Riedel-Heller S, Wolf H, Arendt T, Gertz HJ (2001) Correlation between cortical theta activity and hippocampal volumes in health, mild cognitive impairment, and mild dementia. J Clin Neurophysiol 18(2):178–184

    Article  CAS  PubMed  Google Scholar 

  27. Herrup K, Arendt T (2002) Re-expression of cell cycle proteins induces neuronal cell death during Alzheimer’s disease. J Alzheimers Dis 4:243–247

    CAS  PubMed  Google Scholar 

  28. Herrup K (2012) The contributions of unscheduled neuronal cell cycle events to the death of neurons in Alzheimer’s disease. Front Biosci 4:2101–2109

    Article  Google Scholar 

  29. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572

    Article  CAS  PubMed  Google Scholar 

  30. Hughes TR, Roberts CJ, Dai H, Jones AR, Meyer MR, Slade D et al (2000) Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25:333–337

    Article  CAS  PubMed  Google Scholar 

  31. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2010) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement 8:1–13

  32. Iourov IY, Liehr T, Vorsanova SG, Kolotii AD, Yurov YB (2006) Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding. Chromosome Res 14:223–229

    Article  CAS  PubMed  Google Scholar 

  33. Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34(2):212–220

    Article  CAS  PubMed  Google Scholar 

  34. Iourov IY, Vorsanova SG, Yurov YB (2006) Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191

    Article  CAS  PubMed  Google Scholar 

  35. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC et al (2011) Introduction to the recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262

  36. Kaushal D, Contos JJ, Treuner K, Yang AH, Kingsbury MA, Rehen SK et al (2003) Alteration of gene expression by chromosome loss in the postnatal mouse brain. J Neurosci 23:5599–5606

    CAS  PubMed  Google Scholar 

  37. Kornack DR, Rakic P (1998) Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA 95:1242–1246

  38. Krubitzer L, Kahn DM (2003) Nature versus nurture revisited: an old idea with a new twist. Prog Neurobiol 70:33–52

    Article  PubMed  Google Scholar 

  39. Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R Jr, Gorospe M, Mattson MP (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561

    Article  CAS  PubMed  Google Scholar 

  40. McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH (2013) Mosaic copy number variation in human neurons. Science 342(6158):632–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

  42. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  CAS  PubMed  Google Scholar 

  43. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

  44. Morris JC, Heymann A, Mohs RC et al (1989) The Consotium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165

    Article  CAS  PubMed  Google Scholar 

  45. Mosch B, Mittag A, Lenz D, Arendt T, Tárnok A (2006) Laser scanning cytometry in human brain slices. Cytometry A 69(3):135–138

    Article  PubMed  Google Scholar 

  46. Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27:6859–6867

    Article  CAS  PubMed  Google Scholar 

  47. Pack SD, Weil RJ, Vortmeyer AO, Zeng W, Li J, Okamoto H et al (2005) Individual adult human neurons display aneuploidy: detection by fluorescence in situ hybridization and single neuron PCR. Cell Cycle 4:1758–1760

    Article  CAS  PubMed  Google Scholar 

  48. Peterson SE, Yang AH, Bushman DM, Westra JW, Yung YC, Barral S, Mutoh T, Rehen SK, Chun J (2012) Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci 32:16213–16222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Potter H (1991) Review and hypothesis: Alzheimer disease and Down syndrome—chromosome 21 nondisjunction may underlie both disorders. Am J Hum Genet 48:1192–1200

  50. Rapoport SI (1988) Brain evolution and Alzheimer’s disease. Rev Neurol (Paris) 144:79–90

    CAS  Google Scholar 

  51. Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BSV, Kingsbury MA, Cabral KMS, McConell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal brain. J Neurosci 25:2176–2180

    Article  CAS  PubMed  Google Scholar 

  52. Reisberg B, Ferris SH, de Leon MJ, Crook T (1982) The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry 139(9):1136–1139

    Article  CAS  PubMed  Google Scholar 

  53. Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317–332

    Article  CAS  PubMed  Google Scholar 

  54. Sheltzer JM, Torres EM, Dunham MJ, Amon A (2012) Transcriptional consequences of aneuploidy. Proc Natl Acad Sci USA 109:12644–12649

  55. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

  56. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  57. Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179:737–746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Vogt C, Vogt C (1922) Erkrankungen der Großhirnrinde im Lichte der Topistik, Pathoklise und Pathoarchitektonik. J Psychol Neurol 28:1–171

    Google Scholar 

  59. Westra JW, Rivera RR, Bushman DM, Yung YC, Peterson SE, Barral S, Chun J (2010) Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J Comp Neurol 518:3981–4000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Westra JW, Peterson SE, Yung YC, Mutoh T, Barral S, Chun J (2008) Aneuploid mosaicism in the developing and adult cerebellar cortex. J Comp Neurol 507:1944–1951

    Article  PubMed  Google Scholar 

  61. Wolf H, Hensel A, Arendt T, Kivipelto M, Winblad B, Gertz HJ (2004) Serum lipids and hippocampal volume: the link to Alzheimer’s disease? Ann Neurol 56(5):745–748

  62. Yang Y, Geldmacher DS, Herrup K (2001) DNA replication precedes neuronal cell death in Alzheimers disease. J Neurosci 21:2661–2668

  63. Yurov YB, Iourov IY, Monakhov VV, Soloviev IV, Vostrikov VM, Vorsanova SG (2005) The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem 53:385–390

    Article  CAS  PubMed  Google Scholar 

  64. Yurov YB, Iourov IY, Vorsanova SG, Demidova IA, Kravetz VS, Beresheva AK, Kolotii AD, Monakchov VV, Uranova NA, Vostrikov VM, Soloviev IV, Liehr T (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98:137–147

    Article  Google Scholar 

  65. Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, Pellestor F, Beresheva AK, Demidova IA, Kravets VS, Monakhov VV, Soloviev IV (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2(6):e558

    Article  PubMed Central  PubMed  Google Scholar 

  66. Yurov YB, Vorsanova SG, Iourov IY, Demidova IA, Beresheva AK, Kravetz VS, Monakhov VV, Kolotii AD, Voinova-Ulas VY, Gorbachevskaya NL (2007) Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet 44(8):521–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Yurov YB, Vorsanova SG, Liehr T, Kolotii AD, Iourov IY (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet 7(1):20

    Article  PubMed Central  PubMed  Google Scholar 

  68. Yurov YB, Vostrikov VM, Vorsanova SG, Monakhov VV, Iourov IY (2001) Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev Suppl 1:S186–S190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Arendt.

Ethics declarations

Funding

This study was funded by the Fritz Thyssen Foundation (Az.10.13.1.144) and the ERA.Net RUS Plus Programme.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were carried out in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendt, T., Brückner, M.K. & Lösche, A. Regional mosaic genomic heterogeneity in the elderly and in Alzheimer’s disease as a correlate of neuronal vulnerability. Acta Neuropathol 130, 501–510 (2015). https://doi.org/10.1007/s00401-015-1465-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1465-5

Keywords

Navigation