Skip to main content
Log in

Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

IDH wild type (IDHwt) anaplastic astrocytomas WHO grade III (AA III) are associated with poor outcome. To address the possibilities of molecular subsets among astrocytoma or of diagnostic reclassification, we analyzed a series of 160 adult IDHwt tumors comprising 120 AA III and 40 diffuse astrocytomas WHO grade II (A II) for molecular hallmark alterations and established methylation and copy number profiles. Based on molecular profiles and hallmark alterations the tumors could be grouped into four major sets. 124/160 (78 %) tumors were diagnosed as the molecular equivalent of conventional glioblastoma (GBM), and 15/160 (9 %) as GBM-H3F3A mutated (GBM-H3). 13/160 (8 %) exhibited a distinct methylation profile that was most similar to GBM-H3-K27, however, lacked the H3F3A mutation. This group was enriched for tumors of infratentorial and midline localization and showed a trend towards a more favorable prognosis. All but one of the 120 IDHwt AA III could be assigned to these three groups. 7 tumors recruited from the 40 A II, comprised a variety of molecular signatures and all but one were reclassified into distinct WHO entities of lower grades. Interestingly, TERT mutations were exclusively restricted to the molecular GBM (78 %) and associated with poor clinical outcome. However, the GBM-H3 group lacking TERT mutations appeared to fare even worse. Our data demonstrate that most of the tumors diagnosed as IDHwt astrocytomas can be allocated to other tumor entities on a molecular basis. The diagnosis of IDHwt diffuse astrocytoma or anaplastic astrocytoma should be used with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602

    Article  CAS  PubMed  Google Scholar 

  2. Cancer Genome Atlas Research Network (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. doi:10.1056/NEJMoa1402121

  3. Capper D, Weißert S, Balss J et al (2010) Characterization of R132H mutation specific IDH1 Antibody binding in brain tumors. Brain Pathol 20:245–254

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1 mutated glioblastomas and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718

    Article  PubMed  Google Scholar 

  5. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1010 diffuse gliomas. Acta Neuropathol 118:469–474

    Article  PubMed  Google Scholar 

  6. Horbinski C (2013) What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 125:621–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DT, Collins VP (2009) IDH1 mutations are present in the majority of common adult gliomas but are rare in primary glioblastomas. Neuro Oncol 11:341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Killela PJ, Reitman ZJ, Jiao Y et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci 110:6021–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koelsche C, Sahm F, Capper D et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126:907–915

    Article  CAS  PubMed  Google Scholar 

  10. Koelsche C, Wöhrer A, Jeibmann A, Schittenhelm J, Schindler G, Preusser M, Lasitschka F, von Deimling A, Capper D (2013) Mutant BRAF V600E protein in ganglioglioma is predominantly expressed by neuronal tumor cells. Acta Neuropathol 125:891–900

    Article  CAS  PubMed  Google Scholar 

  11. Labussiere M, Idbaih A, Wang XW et al (2010) All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 74:1886–1890

    Article  CAS  PubMed  Google Scholar 

  12. Louis D, Ohgaki H, Wiestler O, Cavenee W (2007) World Health Organization classification of tumours of the central nervous system. In: Bosman F, Jaffe E, Lakhani S, Ohgaki H (eds) World Health Organization Classification of Tumours, 4th edn. IARC, Lyon

  13. Louis DN, Perry A, Burger P et al (2014) International Society of Neuropathology—Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24:429–435. doi:10.1111/bpa.12171

    Article  PubMed  Google Scholar 

  14. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596

    Article  CAS  PubMed  Google Scholar 

  16. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prabowo AS, van Thuijl HF, Scheinin I et al (2015) Landscape of chromosomal copy number aberrations in gangliogliomas and dysembryoplastic neuroepithelial tumours. Neuropathol Appl Neurobiol. doi:10.1111/nan.12235

  18. Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873

    Article  CAS  PubMed  Google Scholar 

  19. Reuss DE, Sahm F, Schrimpf D et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129:133–146

    Article  CAS  PubMed  Google Scholar 

  20. Schwartzentruber J, Korshunov A, Liu X et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in pediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  21. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468. doi:10.1038/ng.3273

    Article  CAS  PubMed  Google Scholar 

  23. Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Venneti S, Santi M, Felicella MM et al (2014) A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:653–656

    Google Scholar 

  26. Weller M, Weber RG, Willscher E et al (2015) Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 129:679–693

    Article  CAS  PubMed  Google Scholar 

  27. Wiestler B, Capper D, Sill M et al (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128:561–571

    Article  CAS  PubMed  Google Scholar 

  28. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yip S, Butterfield YS, Morozova O et al (2012) Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol 226:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Part of this work was undertaken at UCLH/UCL which received funding from NIHR. We thank Maria Fernanda Ruiz, Kerstin Lindenberg, Viktoria Zeller for technical assistance. FS is a fellow of the Medical Faculty Heidelberg Physician-Scientist Program. Supported by the Bundesministerium für Bildung und Forschung (BMBF) program SYS-GLIO and the German Cancer Net (DKTK) joint funding project “Next generation molecular diagnostics of malignant gliomas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas von Deimling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1088 kb)

Supplementary material 2 (PPTX 674 kb)

Supplementary material 3 (PPTX 56 kb)

Supplementary material 4 (DOCX 28 kb)

401_2015_1454_MOESM5_ESM.xlsx

Supplementary material 5 (XLSX 26 kb) Supplementary Table 2: Molecular alterations in 160 patients with IDHwt astrocytoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuss, D.E., Kratz, A., Sahm, F. et al. Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130, 407–417 (2015). https://doi.org/10.1007/s00401-015-1454-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1454-8

Keywords

Navigation