Skip to main content
Log in

Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe Study

  • Methods Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The use of an appropriate reference gene to ensure accurate normalisation is crucial for the correct quantification of gene expression using qPCR assays and RNA arrays. The main criterion for a gene to qualify as a reference gene is a stable expression across various cell types and experimental settings. Several reference genes are commonly in use but more and more evidence reveals variations in their expression due to the presence of on-going neuropathological disease processes, raising doubts concerning their use. We conducted an analysis of genome-wide changes of gene expression in the human central nervous system (CNS) covering several neurological disorders and regions, including the spinal cord, and were able to identify a number of novel stable reference genes. We tested the stability of expression of eight novel (ATP5E, AARS, GAPVD1, CSNK2B, XPNPEP1, OSBP, NAT5 and DCTN2) and four more commonly used (BECN1, GAPDH, QARS and TUBB) reference genes in a smaller cohort using RT-qPCR. The most stable genes out of the 12 reference genes were tested as normaliser to validate increased levels of a target gene in CNS disease. We found that in human post-mortem tissue the novel reference genes, XPNPEP1 and AARS, were efficient in replicating microarray target gene expression levels and that XPNPEP1 was more efficient as a normaliser than BECN1, which has been shown to change in expression as a consequence of neuronal cell loss. We provide herein one more suitable novel reference gene, XPNPEP1, with no current neuroinflammatory or neurodegenerative associations that can be used for gene quantitative gene expression studies with human CNS post-mortem tissue and also suggest a list of potential other candidates. These data also emphasise the importance of organ/tissue-specific stably expressed genes as reference genes for RNA studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268

    Article  PubMed  Google Scholar 

  2. Albertella MR, Jones H, Thomson W, Olavesen MG, Neville M, Campbell RD (1996) Localisation of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II beta subunit, and DNA sequence analysis of the class III region. DNA Seq J DNA Seq Mapp 7:9–12

    CAS  Google Scholar 

  3. Barrachina M, Castano E, Ferrer I (2006) TaqMan PCR assay in the control of RNA normalization in human post-mortem brain tissue. Neurochem Int 49:276–284

    Article  PubMed  CAS  Google Scholar 

  4. Bazan JF, Weaver LH, Roderick SL, Huber R, Matthews BW (1994) Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold. Proc Natl Acad Sci USA 91:2473–2477

    Article  PubMed  CAS  Google Scholar 

  5. Bottomly D, Walter NA, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney M, McWeeney SK, Hitzemann R (2011) Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS ONE 6:e17820

    Article  PubMed  CAS  Google Scholar 

  6. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  7. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  CAS  Google Scholar 

  8. Bustin SA (2004) A–Z of quantitative PCR. International University Line, La Jolla

    Google Scholar 

  9. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    Article  PubMed  CAS  Google Scholar 

  10. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  11. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  Google Scholar 

  12. Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17:839–849

    Article  PubMed  CAS  Google Scholar 

  13. Chen-Plotkin AS, Geser F, Plotkin JB, Clark CM, Kwong LK, Yuan W, Grossman M, Van Deerlin VM, Trojanowski JQ, Lee VM (2008) Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet 17:1349–1362

    Article  PubMed  CAS  Google Scholar 

  14. Colell A, Green DR, Ricci JE (2009) Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 16:1573–1581

    Article  PubMed  CAS  Google Scholar 

  15. Coulson DT, Brockbank S, Quinn JG, Murphy S, Ravid R, Irvine GB, Johnston JA (2008) Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue. BMC Mol Biol 9:46

    Article  PubMed  Google Scholar 

  16. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898

    Article  PubMed  Google Scholar 

  17. Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143

    Article  PubMed  CAS  Google Scholar 

  18. Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2005) Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 22:750–762

    Article  PubMed  Google Scholar 

  19. Durrenberger PF, Fernando S, Kashefi SN, Ferrer I, Hauw JJ, Seilhean D, Smith C, Walker R, Al-Sarraj S, Troakes C, Palkovits M, Kasztner M, Huitinga I, Arzberger T, Dexter DT, Kretzschmar H, Reynolds R (2010) Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNet Europe study. J Neuropathol Exp Neurol 69:70–81

    Article  PubMed  Google Scholar 

  20. Durrenberger PF, Ettorre A, Kamel F, Webb LV, Sim M, Nicholas RS, Malik O, Reynolds R, Boyton RJ, Altmann DM (2012) Innate Immunity in multiple sclerosis white matter lesions: expression of natural cytotoxicity triggering receptor 1 (NCR1). J Neuroinflamm 9:1

    Article  CAS  Google Scholar 

  21. Durrenberger PF, Grunblatt E, Fernando FS, Monoranu CM, Evans J, Riederer P, Reynolds R, Dexter DT (2012) Inflammatory pathways in Parkinson’s disease; A BNE Microarray Study. Parkinsons Dis 2012:214714

    PubMed  Google Scholar 

  22. Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19:362–365

    Article  PubMed  CAS  Google Scholar 

  23. Erlich S, Shohami E, Pinkas-Kramarski R (2006) Neurodegeneration induces upregulation of Beclin 1. Autophagy 2:49–51

    PubMed  CAS  Google Scholar 

  24. Fairn GD, McMaster CR (2008) Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cell Mol Life Sci 65:228–236

    Article  PubMed  CAS  Google Scholar 

  25. Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P, Weng Z, Mutter GL, Frosch MP, Macdonald ME, Milford EL, Crum CP, Bueno R, Pratt RE, Mahadevappa M, Warrington JA, Stephanopoulos G, Gullans SR (2001) A compendium of gene expression in normal human tissues. Physiol Genomics 7:97–104

    PubMed  CAS  Google Scholar 

  26. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  PubMed  CAS  Google Scholar 

  27. Johansson S, Fuchs A, Okvist A, Karimi M, Harper C, Garrick T, Sheedy D, Hurd Y, Bakalkin G, Ekstrom TJ (2007) Validation of endogenous controls for quantitative gene expression analysis: application on brain cortices of human chronic alcoholics. Brain Res 1132:20–28

    Article  PubMed  CAS  Google Scholar 

  28. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  PubMed  CAS  Google Scholar 

  29. Kasukawa T, Masumoto KH, Nikaido I, Nagano M, Uno KD, Tsujino K, Hanashima C, Shigeyoshi Y, Ueda HR (2011) Quantitative expression profile of distinct functional regions in the adult mouse brain. PLoS ONE 6:e23228

    Article  PubMed  CAS  Google Scholar 

  30. Korade Z, Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55:1265–1273

    Article  PubMed  CAS  Google Scholar 

  31. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Aspects Med 27:95–125

    Article  PubMed  CAS  Google Scholar 

  32. Lagace TA, Byers DM, Cook HW, Ridgway ND (1999) Chinese hamster ovary cells overexpressing the oxysterol binding protein (OSBP) display enhanced synthesis of sphingomyelin in response to 25-hydroxycholesterol. J Lipid Res 40:109–116

    PubMed  CAS  Google Scholar 

  33. Lanoix D, Lacasse AA, St-Pierre J, Taylor SC, Ethier-Chiasson M, Lafond J, Vaillancourt C (2012) Quantitative PCR pitfalls: the case of the human placenta. Mol Biotechnol

  34. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55

    Article  PubMed  CAS  Google Scholar 

  35. Lee S, Jo M, Lee J, Koh SS, Kim S (2007) Identification of novel universal housekeeping genes by statistical analysis of microarray data. J Biochem Mol Biol 40:226–231

    Article  PubMed  CAS  Google Scholar 

  36. Li X, Lou Z, Zhou W, Ma M, Cao Y, Geng Y, Bartlam M, Zhang XC, Rao Z (2008) Structure of human cytosolic X-prolyl aminopeptidase: a double Mn(II)-dependent dimeric enzyme with a novel three-domain subunit. J Biol Chem 283:22858–22866

    Article  PubMed  CAS  Google Scholar 

  37. Lowther WT, Matthews BW (2000) Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477:157–167

    Article  PubMed  CAS  Google Scholar 

  38. Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165–172

    Article  PubMed  CAS  Google Scholar 

  39. Penna I, Vella S, Gigoni A, Russo C, Cancedda R, Pagano A (2011) Selection of candidate housekeeping genes for normalization in human postmortem brain samples. Int J Mol Sci 12:5461–5470

    Article  PubMed  CAS  Google Scholar 

  40. Ruan W, Lai M (2007) Actin, a reliable marker of internal control? Clin Chim Acta 385:1–5

    Article  PubMed  CAS  Google Scholar 

  41. Schimmel P (2008) Development of tRNA synthetases and connection to genetic code and disease. Protein Sci 17:1643–1652

    Article  PubMed  CAS  Google Scholar 

  42. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  PubMed  CAS  Google Scholar 

  43. Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432:159–184

    Article  PubMed  CAS  Google Scholar 

  44. Solanas M, Moral R, Escrich E (2001) Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors. Anal Biochem 288:99–102

    Article  PubMed  CAS  Google Scholar 

  45. Stum M, McLaughlin HM, Kleinbrink EL, Miers KE, Ackerman SL, Seburn KL, Antonellis A, Burgess RW (2011) An assessment of mechanisms underlying peripheral axonal degeneration caused by aminoacyl-tRNA synthetase mutations. Mol Cell Neurosci 46:432–443

    Article  PubMed  CAS  Google Scholar 

  46. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 99:4465–4470

    Article  PubMed  CAS  Google Scholar 

  47. Szymanski M, Deniziak M, Barciszewski J (2000) The new aspects of aminoacyl-tRNA synthetases. Acta Biochim Pol 47:821–834

    PubMed  CAS  Google Scholar 

  48. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  PubMed  CAS  Google Scholar 

  49. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034

  50. Vanhoof G, Goossens F, Juliano MA, Juliano L, De Meester I, Hendriks D, Schatteman K, Scharpe S (1997) Human lymphocyte X-prolyl aminopeptidase (aminopeptidase P)-like protein. A new member of the proline peptidase family? Adv Exp Med Biol 421:25–29

    PubMed  CAS  Google Scholar 

  51. Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2:143–147

    PubMed  CAS  Google Scholar 

  52. Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE (2006) Rosetta error model for gene expression analysis. Bioinformatics 22:1111–1121

    Article  PubMed  CAS  Google Scholar 

  53. Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (2002) A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 35:921–933

    Article  PubMed  CAS  Google Scholar 

  54. Zhu J, He F, Song S, Wang J, Yu J (2008) How many human genes can be defined as housekeeping with current expression data? BMC Genomics 9:172

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the tissue donors and their families. Also we are grateful to Veronique Sazdovitch and Kasztner Magdolna for technical assistance. We would like also to thank Charles Mein at The Genome Centre (John Vane Science Centre, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ) for his assistance and expertise. This study was supported by the European Commission under the Sixth Framework Programme (BrainNet Europe II, LSHM-CT-2004-503039). The Multiple Sclerosis and Parkinson’s Disease Tissue Banks at Imperial were supported by the MS Society of Great Britain and Northern Ireland and the Parkinson’s UK respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Reynolds.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durrenberger, P.F., Fernando, F.S., Magliozzi, R. et al. Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe Study. Acta Neuropathol 124, 893–903 (2012). https://doi.org/10.1007/s00401-012-1027-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1027-z

Keywords

Navigation