Skip to main content

Advertisement

Log in

Glial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts

Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) are adult onset neurodegenerative disorders characterised by prominent intracellular α-synuclein aggregates (α-synucleinopathies). The glial contribution to neurodegeneration in α-synucleinopathies was largely underestimated until recently. However, brains of PD and DLB patients exhibit not only neuronal inclusions such as Lewy bodies or Lewy neurites but also glial α-synuclein aggregates. Accumulating experimental evidence in PD models suggests that astrogliosis and microgliosis act as important mediators of neurodegeneration playing a pivotal role in both disease initiation and progression. In MSA, oligodendrocytes are intriguingly affected by aberrant cytoplasmic accumulation of α-synuclein (glial cytoplasmic inclusions, Papp-Lantos bodies). Converging evidence from human postmortem studies and transgenic MSA models suggests that oligodendroglial dysfunction both triggers and exacerbates neuronal degeneration. This review summarises the wide range of responsibilities of astroglia, microglia and oligodendroglia in the healthy brain and the changes in glial function associated with ageing. We then provide a critical analysis of the role of glia in α-synucleinopathies including putative mechanisms promoting a chronically diseased glial microenvironment which can lead to detrimental neuronal changes, including cell loss. Finally, major therapeutic strategies targeting glial pathology in α-synucleinopathies as well as current pitfalls for disease-modification in clinical trials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abeliovich A, Schmitz Y, Farinas I et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252

    Article  PubMed  CAS  Google Scholar 

  2. Akira S (2001) Toll-like receptors and innate immunity. Adv Immunol 78:1–56

    Article  PubMed  CAS  Google Scholar 

  3. Al-Chalabi A, Durr A, Wood NW et al (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS One 4:e7114

    Article  PubMed  CAS  Google Scholar 

  4. Albert M (1993) Neuropsychological and neurophysiological changes in healthy adult humans across the age range. Neurobiol Aging 14:623–625

    Article  PubMed  CAS  Google Scholar 

  5. Amiry-Moghaddam M, Otsuka T, Hurn PD et al (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100:2106–2111

    Article  PubMed  CAS  Google Scholar 

  6. Anderson JP, Walker DE, Goldstein JM et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    Article  PubMed  CAS  Google Scholar 

  7. Appel K, Honegger P, Gebicke-Haerter PJ (1995) Expression of interleukin-3 and tumor necrosis factor-beta mRNAs in cultured microglia. J Neuroimmunol 60:83–91

    Article  PubMed  CAS  Google Scholar 

  8. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  9. Aubin N, Curet O, Deffois A, Carter C (1998) Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J Neurochem 71:1635–1642

    Article  PubMed  CAS  Google Scholar 

  10. Austin SA, Floden AM, Murphy EJ, Combs CK (2006) Alpha-synuclein expression modulates microglial activation phenotype. J Neurosci 26:10558–10563

    Article  PubMed  CAS  Google Scholar 

  11. Baba M, Nakajo S, Tu PH et al (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    PubMed  CAS  Google Scholar 

  12. Balasingam V, Dickson K, Brade A, Yong VW (1996) Astrocyte reactivity in neonatal mice: apparent dependence on the presence of reactive microglia/macrophages. Glia 18:11–26

    Article  PubMed  CAS  Google Scholar 

  13. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    PubMed  CAS  Google Scholar 

  14. Becker C, Jick SS, Meier CR (2011) NSAID use and risk of Parkinson disease: a population-based case-control study. Eur J Neurol. doi:10.1111/j.1468-1331.2011.03399.x

  15. Benner EJ, Banerjee R, Reynolds AD et al (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3:e1376

    Article  PubMed  CAS  Google Scholar 

  16. Benner EJ, Mosley RL, Destache CJ et al (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:9435–9440

    Article  PubMed  CAS  Google Scholar 

  17. Beyer K, Ariza A (2007) Protein aggregation mechanisms in synucleinopathies: commonalities and differences. J Neuropathol Exp Neurol 66:965–974

    Article  PubMed  CAS  Google Scholar 

  18. Bianco F, Pravettoni E, Colombo A et al (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174:7268–7277

    PubMed  CAS  Google Scholar 

  19. Biju K, Zhou Q, Li G et al (2010) Macrophage-mediated GDNF delivery protects against dopaminergic neurodegeneration: a therapeutic strategy for Parkinson’s disease. Mol Ther 18:1536–1544

    Article  PubMed  CAS  Google Scholar 

  20. Braak H, Del Tredici K (2004) Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol Aging 25:19–23

    Article  PubMed  CAS  Google Scholar 

  21. Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119

    PubMed  Google Scholar 

  22. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Suppl 3):III/1–III/5

    Google Scholar 

  23. Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    Article  PubMed  CAS  Google Scholar 

  24. Braak H, Sastre M, Del Tredici K (2007) Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114:231–241

    Article  PubMed  CAS  Google Scholar 

  25. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53

    Article  PubMed  Google Scholar 

  26. Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 82:615–624

    Article  PubMed  CAS  Google Scholar 

  27. Brochard V, Combadiere B, Prigent A et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192

    PubMed  CAS  Google Scholar 

  28. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF (2003) Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 23:7789–7800

    PubMed  CAS  Google Scholar 

  29. Bunge RP (1968) Glial cells and the central myelin sheath. Physiol Rev 48:197–251

    PubMed  CAS  Google Scholar 

  30. Burke RE, Dauer WT, Vonsattel JP (2008) A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 64:485–491

    Article  PubMed  Google Scholar 

  31. Bush TG, Puvanachandra N, Horner CH et al (1999) Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308

    Article  PubMed  CAS  Google Scholar 

  32. Bushong EA, Martone ME, Ellisman MH (2004) Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22:73–86

    Article  PubMed  Google Scholar 

  33. Butt AM, Ibrahim M, Berry M (1998) Axon-myelin sheath relations of oligodendrocyte unit phenotypes in the adult rat anterior medullary velum. J Neurocytol 27:259–269

    PubMed  CAS  Google Scholar 

  34. Buttini M, Boddeke H (1995) Peripheral lipopolysaccharide stimulation induces interleukin-1 beta messenger RNA in rat brain microglial cells. Neuroscience 65:523–530

    Article  PubMed  CAS  Google Scholar 

  35. Calne DB, Mizuno Y (2004) The neuromythology of Parkinson’s disease. Parkinsonism Relat Disord 10:319–322

    Article  PubMed  Google Scholar 

  36. Campbell BC, McLean CA, Culvenor JG et al (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J Neurochem 76:87–96

    Article  PubMed  CAS  Google Scholar 

  37. Carmignoto G, Gomez-Gonzalo M (2010) The contribution of astrocyte signalling to neurovascular coupling. Brain Res Rev 63:138–148

    Article  PubMed  CAS  Google Scholar 

  38. Casarejos MJ, Menendez J, Solano RM, Rodriguez-Navarro JA, Garcia de Yebenes J, Mena MA (2006) Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 97:934–946

    Article  PubMed  CAS  Google Scholar 

  39. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383–396

    Article  PubMed  CAS  Google Scholar 

  40. Choi DK, Pennathur S, Perier C et al (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. J Neurosci 25:6594–6600

    Article  PubMed  CAS  Google Scholar 

  41. Ciccarelli R, Ballerini P, Sabatino G et al (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19:395–414

    Article  PubMed  CAS  Google Scholar 

  42. Conde JR, Streit WJ (2006) Microglia in the aging brain. J Neuropathol Exp Neurol 65:199–203

    PubMed  Google Scholar 

  43. Croisier E, Graeber MB (2006) Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol 112:517–530

    Article  PubMed  Google Scholar 

  44. de Silva HR, Khan NL, Wood NW (2000) The genetics of Parkinson’s disease. Curr Opin Genet Dev 10:292–298

    Article  PubMed  Google Scholar 

  45. Dean JM, Wang X, Kaindl AM et al (2010) Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 24:776–783

    Article  PubMed  CAS  Google Scholar 

  46. Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88:494–501

    Article  PubMed  CAS  Google Scholar 

  47. del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system. Hoeber PB, New York, pp 483–534

    Google Scholar 

  48. Dermietzel R, Gao Y, Scemes E et al (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32:45–56

    Article  PubMed  CAS  Google Scholar 

  49. Deshpande M, Zheng J, Borgmann K et al (2005) Role of activated astrocytes in neuronal damage: potential links to HIV-1-associated dementia. Neurotox Res 7:183–192

    Article  PubMed  CAS  Google Scholar 

  50. Desplats P, Lee HJ, Bae EJ et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015

    Article  PubMed  CAS  Google Scholar 

  51. Dickson DW, Lin W, Liu WK, Yen SH (1999) Multiple system atrophy: a sporadic synucleinopathy. Brain Pathol 9:721–732

    Article  PubMed  CAS  Google Scholar 

  52. Dodel R, Spottke A, Gerhard A et al (2010) Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord 25:97–107

    PubMed  Google Scholar 

  53. Domercq M, Sanchez-Gomez MV, Sherwin C, Etxebarria E, Fern R, Matute C (2007) System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J Immunol 178:6549–6556

    PubMed  CAS  Google Scholar 

  54. Dorsey ER, Constantinescu R, Thompson JP et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    Article  PubMed  CAS  Google Scholar 

  55. Durrenberger PF, Filiou MD, Moran LB et al (2009) DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J Neurosci Res 87:238–245

    Article  PubMed  CAS  Google Scholar 

  56. Edwards TL, Scott WK, Almonte C et al (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74:97–109

    Article  PubMed  CAS  Google Scholar 

  57. Eklind S, Hagberg H, Wang X et al (2006) Effect of lipopolysaccharide on global gene expression in the immature rat brain. Pediatr Res 60:161–168

    Article  PubMed  CAS  Google Scholar 

  58. El-Agnaf OM, Salem SA, Paleologou KE et al (2003) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17:1945–1947

    PubMed  CAS  Google Scholar 

  59. Elbaz A, Ross OA, Ioannidis JP et al (2010) Independent and joint effects of the MAPT and SNCA genes in Parkinson disease. Ann Neurol 69:778–792

    Article  CAS  Google Scholar 

  60. Emmanouilidou E, Melachroinou K, Roumeliotis T et al (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851

    Article  PubMed  CAS  Google Scholar 

  61. Escartin C, Bonvento G (2008) Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 38:231–241

    Article  PubMed  CAS  Google Scholar 

  62. Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G (2007) Non-steroidal anti-inflammatory drugs in Parkinson’s disease. Exp Neurol 205:295–312

    Article  PubMed  CAS  Google Scholar 

  63. Faissner A, Pyka M, Geissler M et al (2010) Contributions of astrocytes to synapse formation and maturation—potential functions of the perisynaptic extracellular matrix. Brain Res Rev 63:26–38

    Article  PubMed  CAS  Google Scholar 

  64. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  65. Flanary BE, Streit WJ (2003) Telomeres shorten with age in rat cerebellum and cortex in vivo. J Anti Aging Med 6:299–308

    Article  PubMed  CAS  Google Scholar 

  66. Flanary BE, Streit WJ (2004) Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia 45:75–88

    Article  PubMed  Google Scholar 

  67. Gagne JJ, Power MC (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74:995–1002

    Article  PubMed  CAS  Google Scholar 

  68. Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28:7687–7698

    Article  PubMed  CAS  Google Scholar 

  69. Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS (2011) HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 31:1081–1092

    Article  PubMed  CAS  Google Scholar 

  70. Garcia-Matas S, Gutierrez-Cuesta J, Coto-Montes A et al (2008) Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity. Aging Cell 7:630–640

    Article  PubMed  CAS  Google Scholar 

  71. Gerhard A, Banati RB, Goerres GB et al (2003) [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 61:686–689

    PubMed  CAS  Google Scholar 

  72. Gerhard A, Pavese N, Hotton G et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  PubMed  CAS  Google Scholar 

  73. Geser F, Jellinger KA, Köllensperger M, Stefanova N, Wenning GK (2010) Multiple system atrophy. Etiology, pathology, and pathogenesis. In: Schapira AHV, Lang AET, Fahn S (eds) Movement disorders 4. Elsevier, Saunders, pp 321–339

    Chapter  Google Scholar 

  74. Giasson BI, Duda JE, Murray IV et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  PubMed  CAS  Google Scholar 

  75. Gilman S, Low PA, Quinn N et al (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98

    Article  PubMed  CAS  Google Scholar 

  76. Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  PubMed  CAS  Google Scholar 

  77. Glanzer JG, Enose Y, Wang T et al (2007) Genomic and proteomic microglial profiling: pathways for neuroprotective inflammatory responses following nerve fragment clearance and activation. J Neurochem 102:627–645

    Article  PubMed  CAS  Google Scholar 

  78. Golgi C (1903) Opera Omnia. Hoepli, Milano

    Google Scholar 

  79. Gonzalez-Perez O, Alvarez-Buylla A (2011) Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev

  80. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  81. Greten-Harrison B, Polydoro M, Morimoto-Tomita M et al (2010) alphabetagamma-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc Natl Acad Sci USA 107:19573–19578

    Article  PubMed  CAS  Google Scholar 

  82. Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H (2010) Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain 3:12

    Article  PubMed  CAS  Google Scholar 

  83. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477

    Article  PubMed  CAS  Google Scholar 

  84. Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26:6–17

    Article  PubMed  Google Scholar 

  85. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  86. Hansen C, Angot E, Bergstrom AL et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725

    Article  PubMed  CAS  Google Scholar 

  87. Hasegawa-Ishii S, Takei S, Inaba M et al (2010) Defects in cytokine-mediated neuroprotective glial responses to excitotoxic hippocampal injury in senescence-accelerated mouse. Brain Behav Immun 25:83–100

    Article  PubMed  CAS  Google Scholar 

  88. Hashioka S, Klegeris A, Schwab C, McGeer PL (2009) Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiol Aging 30:1924–1935

    Article  PubMed  CAS  Google Scholar 

  89. Hayakawa N, Kato H, Araki T (2007) Age-related changes of astorocytes, oligodendrocytes and microglia in the mouse hippocampal CA1 sector. Mech Ageing Dev 128:311–316

    Article  PubMed  CAS  Google Scholar 

  90. Hayes GM, Woodroofe MN, Cuzner ML (1987) Microglia are the major cell type expressing MHC class II in human white matter. J Neurol Sci 80:25–37

    Article  PubMed  CAS  Google Scholar 

  91. Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    Article  PubMed  CAS  Google Scholar 

  92. Herrmann JE, Imura T, Song B et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243

    Article  PubMed  CAS  Google Scholar 

  93. Hines DJ, Hines RM, Mulligan SJ, Macvicar BA (2009) Microglia processes block the spread of damage in the brain and require functional chloride channels. Glia 57:1610–1618

    Article  PubMed  Google Scholar 

  94. Hirohata M, Ono K, Morinaga A, Yamada M (2008) Non-steroidal anti-inflammatory drugs have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. Neuropharmacology 54:620–627

    Article  PubMed  CAS  Google Scholar 

  95. Hirsch EC, Hunot S, Hartmann A (2005) Neuroinflammatory processes in Parkinson’s disease. Parkinsonism Relat Disord 11(Suppl 1):S9–S15

    Article  PubMed  Google Scholar 

  96. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165:618–622

    PubMed  CAS  Google Scholar 

  97. Hlavanda E, Klement E, Kokai E et al (2007) Phosphorylation blocks the activity of tubulin polymerization-promoting protein (TPPP): identification of sites targeted by different kinases. J Biol Chem 282:29531–29539

    Article  PubMed  CAS  Google Scholar 

  98. Hunter RL, Dragicevic N, Seifert K et al (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100:1375–1386

    Article  PubMed  CAS  Google Scholar 

  99. Ikeda K, Akiyama H, Kondo H et al (1995) Thorn-shaped astrocytes: possibly secondarily induced tau-positive glial fibrillary tangles. Acta Neuropathol 90:620–625

    Article  PubMed  CAS  Google Scholar 

  100. Ishizawa K, Komori T, Sasaki S, Arai N, Mizutani T, Hirose T (2004) Microglial activation parallels system degeneration in multiple system atrophy. J Neuropathol Exp Neurol 63:43–52

    PubMed  Google Scholar 

  101. Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475

    Article  PubMed  CAS  Google Scholar 

  102. Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    Article  PubMed  CAS  Google Scholar 

  103. Jander S, Pohl J, D’Urso D, Gillen C, Stoll G (1998) Time course and cellular localization of interleukin-10 mRNA and protein expression in autoimmune inflammation of the rat central nervous system. Am J Pathol 152:975–982

    PubMed  CAS  Google Scholar 

  104. Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18(Suppl 6):S2–S12

    Article  PubMed  Google Scholar 

  105. Jellinger KA (2007) Lewy body disorders. In: Youdim MBH, Riederer P, Mandel SA, Battistin L, Lajtha A (eds) Degenerative diseases of the nervous system. Springer, New York, pp 267–343

    Google Scholar 

  106. Jellinger KA (2009) A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta 1792:730–740

    PubMed  CAS  Google Scholar 

  107. Jellinger KA, Lantos PL (2010) Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update. Acta Neuropathol 119:657–667

    Article  PubMed  CAS  Google Scholar 

  108. Jellinger KA, Seppi K, Wenning GK (2005) Grading of neuropathology in multiple system atrophy: proposal for a novel scale. Mov Disord 20(Suppl 12):S29–S36

    Article  PubMed  Google Scholar 

  109. Jurewicz A, Matysiak M, Tybor K, Kilianek L, Raine CS, Selmaj K (2005) Tumour necrosis factor-induced death of adult human oligodendrocytes is mediated by apoptosis inducing factor. Brain 128:2675–2688

    Article  PubMed  Google Scholar 

  110. Juurlink BH (1997) Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev 21:151–166

    Article  PubMed  CAS  Google Scholar 

  111. Kahle PJ, Neumann M, Ozmen L et al (2002) Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3:583–588

    Article  PubMed  CAS  Google Scholar 

  112. Kandel ER (1991) Nerve cell and behavior. Principles of neural science. Elsevier, New York, pp 18–32

    Google Scholar 

  113. Kiefer R, Schweitzer T, Jung S, Toyka KV, Hartung HP (1998) Sequential expression of transforming growth factor-beta1 by T-cells, macrophages, and microglia in rat spinal cord during autoimmune inflammation. J Neuropathol Exp Neurol 57:385–395

    Article  PubMed  CAS  Google Scholar 

  114. Klegeris A, Giasson BI, Zhang H, Maguire J, Pelech S, McGeer PL (2006) Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J 20:2000–2008

    Article  PubMed  CAS  Google Scholar 

  115. Klegeris A, Pelech S, Giasson BI et al (2008) Alpha-synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol Aging 29:739–752

    Article  PubMed  CAS  Google Scholar 

  116. Knott C, Stern G, Kingsbury A, Welcher AA, Wilkin GP (2002) Elevated glial brain-derived neurotrophic factor in Parkinson’s diseased nigra. Parkinsonism Relat Disord 8:329–341

    Article  PubMed  CAS  Google Scholar 

  117. Knox CA, Kokmen E, Dyck PJ (1989) Morphometric alteration of rat myelinated fibers with aging. J Neuropathol Exp Neurol 48:119–139

    Article  PubMed  CAS  Google Scholar 

  118. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169

    Article  PubMed  CAS  Google Scholar 

  119. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    Article  PubMed  CAS  Google Scholar 

  120. Kong LY, McMillian MK, Hudson PM, Jin L, Hong JS (1997) Inhibition of lipopolysaccharide-induced nitric oxide and cytokine production by ultralow concentrations of dynorphins in mixed glia cultures. J Pharmacol Exp Ther 280:61–66

    PubMed  CAS  Google Scholar 

  121. Kragh CL, Lund LB, Febbraro F et al (2009) {alpha}-Synuclein aggregation and Ser-129 phosphorylation-dependent cell death in oligodendroglial cells. J Biol Chem 284:10211–10222

    Article  PubMed  CAS  Google Scholar 

  122. Lasn H, Winblad B, Bogdanovic N (2006) Neuroglia in the inferior olivary nucleus during normal aging and Alzheimer’s disease. J Cell Mol Med 10:145–156

    Article  PubMed  CAS  Google Scholar 

  123. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  PubMed  CAS  Google Scholar 

  124. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25:6016–6024

    Article  PubMed  CAS  Google Scholar 

  125. Lee HJ, Suk JE, Bae EJ, Lee SJ (2008) Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun 372:423–428

    Article  PubMed  CAS  Google Scholar 

  126. Lee HJ, Suk JE, Patrick C et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272

    Article  PubMed  CAS  Google Scholar 

  127. Letiembre M, Liu Y, Walter S et al (2009) Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30:759–768

    Article  PubMed  CAS  Google Scholar 

  128. Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  PubMed  CAS  Google Scholar 

  129. Liddell JR, Robinson SR, Dringen R, Bishop GM (2010) Astrocytes retain their antioxidant capacity into advanced old age. Glia 58:1500–1509

    PubMed  Google Scholar 

  130. Lien E, Means TK, Heine H et al (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105:497–504

    Article  PubMed  CAS  Google Scholar 

  131. Lindersson E, Lundvig D, Petersen C et al (2005) p25alpha Stimulates alpha-synuclein aggregation and is co-localized with aggregated alpha-synuclein in alpha-synucleinopathies. J Biol Chem 280:5703–5715

    Article  PubMed  CAS  Google Scholar 

  132. Liu JS, Amaral TD, Brosnan CF, Lee SC (1998) IFNs are critical regulators of IL-1 receptor antagonist and IL-1 expression in human microglia. J Immunol 161:1989–1996

    PubMed  CAS  Google Scholar 

  133. Long-Smith CM, Collins L, Toulouse A, Sullivan AM, Nolan YM (2010) Interleukin-1beta contributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. J Neuroimmunol 226:20–26

    Article  PubMed  CAS  Google Scholar 

  134. Lu L, Mak YT, Fang M, Yew DT (2009) The difference in gliosis induced by beta-amyloid and Tau treatments in astrocyte cultures derived from senescence accelerated and normal mouse strains. Biogerontology 10:695–710

    Article  PubMed  CAS  Google Scholar 

  135. Lu X, Bing G, Hagg T (2000) Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience 97:285–291

    Article  PubMed  CAS  Google Scholar 

  136. Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40:139–156

    Article  PubMed  CAS  Google Scholar 

  137. Mackenzie IR (2000) Activated microglia in dementia with Lewy bodies. Neurology 55:132–134

    PubMed  CAS  Google Scholar 

  138. Maehlen J, Olsson T, Zachau A, Klareskog L, Kristensson K (1989) Local enhancement of major histocompatibility complex (MHC) class I and II expression and cell infiltration in experimental allergic encephalomyelitis around axotomized motor neurons. J Neuroimmunol 23:125–132

    Article  PubMed  CAS  Google Scholar 

  139. Marks WJ Jr, Bartus RT, Siffert J et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172

    Article  PubMed  CAS  Google Scholar 

  140. Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152

    Article  PubMed  Google Scholar 

  141. Masliah E, Rockenstein E, Adame A et al (2005) Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46:857–868

    Article  PubMed  CAS  Google Scholar 

  142. Matsuo A, Akiguchi I, Lee GC, McGeer EG, McGeer PL, Kimura J (1998) Myelin degeneration in multiple system atrophy detected by unique antibodies. Am J Pathol 153:735–744

    Article  PubMed  CAS  Google Scholar 

  143. Matute C, Alberdi E, Domercq M et al (2007) Excitotoxic damage to white matter. J Anat 210:693–702

    Article  PubMed  CAS  Google Scholar 

  144. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    PubMed  CAS  Google Scholar 

  145. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  146. McKeith IG, Burn DJ, Ballard CG et al (2003) Dementia with Lewy bodies. Semin Clin Neuropsychiatry 8:46–57

    Article  PubMed  Google Scholar 

  147. McKeith IG, Galasko D, Kosaka K et al (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47:1113–1124

    PubMed  CAS  Google Scholar 

  148. McTigue DM, Tripathi RB (2008) The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107:1–19

    Article  PubMed  CAS  Google Scholar 

  149. Miller DW, Johnson JM, Solano SM, Hollingsworth ZR, Standaert DG, Young AB (2005) Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm 112:1613–1624

    Article  PubMed  CAS  Google Scholar 

  150. Mirza B, Hadberg H, Thomsen P, Moos T (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432

    Article  PubMed  CAS  Google Scholar 

  151. Mizuno T, Kuno R, Nitta A et al (2005) Protective effects of nicergoline against neuronal cell death induced by activated microglia and astrocytes. Brain Res 1066:78–85

    Article  PubMed  CAS  Google Scholar 

  152. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG (2011) alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10:230–240

    Article  PubMed  CAS  Google Scholar 

  153. Mori F, Tanji K, Yoshimoto M, Takahashi H, Wakabayashi K (2002) Demonstration of alpha-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment. Exp Neurol 176:98–104

    Article  PubMed  CAS  Google Scholar 

  154. Nakamura K, Nemani VM, Azarbal F et al. (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein {alpha}-synuclein. J Biol Chem

  155. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  PubMed  CAS  Google Scholar 

  156. Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA (2002) Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci 22:854–862

    PubMed  CAS  Google Scholar 

  157. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  158. Nishie M, Mori F, Fujiwara H et al (2004) Accumulation of phosphorylated alpha-synuclein in the brain and peripheral ganglia of patients with multiple system atrophy. Acta Neuropathol 107:292–298

    Article  PubMed  CAS  Google Scholar 

  159. Nishioka K, Hayashi S, Farrer MJ et al (2006) Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59:298–309

    Article  PubMed  CAS  Google Scholar 

  160. Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ (2010) Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging (in press, corrected proof)

  161. Norris EH, Giasson BI, Lee VM (2004) Alpha-synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 60:17–54

    Article  PubMed  CAS  Google Scholar 

  162. Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17:877–885

    Article  PubMed  CAS  Google Scholar 

  163. O’Sullivan SS, Massey LA, Williams DR et al (2008) Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 131:1362–1372

    Article  PubMed  Google Scholar 

  164. Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM (2005) A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 128:2665–2674

    Article  PubMed  Google Scholar 

  165. Ozawa T, Okuizumi K, Ikeuchi T, Wakabayashi K, Takahashi H, Tsuji S (2001) Analysis of the expression level of alpha-synuclein mRNA using postmortem brain samples from pathologically confirmed cases of multiple system atrophy. Acta Neuropathol 102:188–190

    PubMed  CAS  Google Scholar 

  166. Ozawa T, Paviour D, Quinn NP et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671

    Article  PubMed  Google Scholar 

  167. Ozawa T, Takano H, Onodera O et al (1999) No mutation in the entire coding region of the alpha-synuclein gene in pathologically confirmed cases of multiple system atrophy. Neurosci Lett 270:110–112

    Article  PubMed  CAS  Google Scholar 

  168. Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100

    Article  PubMed  CAS  Google Scholar 

  169. Papp MI, Lantos PL (1994) The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain 117(Pt 2):235–243

    Article  PubMed  Google Scholar 

  170. Park JY, Paik SR, Jou I, Park SM (2008) Microglial phagocytosis is enhanced by monomeric alpha-synuclein, not aggregated alpha-synuclein: implications for Parkinson’s disease. Glia 56:1215–1223

    Article  PubMed  Google Scholar 

  171. Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I (2005) Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57:82–91

    Article  PubMed  CAS  Google Scholar 

  172. Peters A (2002) Structural changes in the normally aging cerebral cortex of primates. Prog Brain Res 136:455–465

    Article  PubMed  Google Scholar 

  173. Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92:293–315

    Article  PubMed  Google Scholar 

  174. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  175. Qian L, Flood PM (2008) Microglial cells and Parkinson’s disease. Immunol Res 41:155–164

    Article  PubMed  CAS  Google Scholar 

  176. Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117:971–979

    Article  PubMed  CAS  Google Scholar 

  177. Racette B (2008) A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol 31:141–150

    Article  CAS  Google Scholar 

  178. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30:77–105

    Article  PubMed  CAS  Google Scholar 

  179. Randy LH, Guoying B (2007) Agonism of peroxisome proliferator receptor-gamma may have therapeutic potential for neuroinflammation and Parkinson’s disease. Curr Neuropharmacol 5:35–46

    Article  PubMed  Google Scholar 

  180. Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19–31

    Article  PubMed  CAS  Google Scholar 

  181. Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL (2007) Neuroprotective activities of CD4+ CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 82:1083–1094

    Article  PubMed  CAS  Google Scholar 

  182. Reynolds AD, Glanzer JG, Kadiu I et al (2008) Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem 104:1504–1525

    Article  PubMed  CAS  Google Scholar 

  183. Reynolds AD, Kadiu I, Garg SK et al (2008) Nitrated alpha-synuclein and microglial neuroregulatory activities. J Neuroimmune Pharmacol 3:59–74

    Article  PubMed  Google Scholar 

  184. Richter-Landsberg C, Gorath M, Trojanowski JQ, Lee VM (2000) alpha-synuclein is developmentally expressed in cultured rat brain oligodendrocytes. J Neurosci Res 62:9–14

    Article  PubMed  CAS  Google Scholar 

  185. Riedel M, Goldbaum O, Richter-Landsberg C (2009) alpha-Synuclein promotes the recruitment of tau to protein inclusions in oligodendroglial cells: effects of oxidative and proteolytic stress. J Mol Neurosci 39:226–234

    Article  PubMed  CAS  Google Scholar 

  186. Rohl C, Lucius R, Sievers J (2007) The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 1129:43–52

    Article  PubMed  CAS  Google Scholar 

  187. Roodveldt C, Labrador-Garrido A, Gonzalez-Rey E et al (2010) Glial innate immunity generated by non-aggregated alpha-synuclein in mouse: differences between wild-type and Parkinson’s disease-linked mutants. PLoS One 5:e13481

    Article  PubMed  CAS  Google Scholar 

  188. Ros-Bernal F, Hunot S, Herrero MT et al (2011) Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc Natl Acad Sci USA 108:6632–6637

    Article  PubMed  CAS  Google Scholar 

  189. Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  PubMed  CAS  Google Scholar 

  190. Saavedra A, Baltazar G, Santos P, Carvalho CM, Duarte EP (2006) Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol Dis 23:533–542

    Article  PubMed  CAS  Google Scholar 

  191. Samii A, Etminan M, Wiens MO, Jafari S (2009) NSAID use and the risk of Parkinson’s disease: systematic review and meta-analysis of observational studies. Drugs Aging 26:769–779

    Article  PubMed  CAS  Google Scholar 

  192. Sanchez-Guajardo V, Febbraro F, Kirik D, Romero-Ramos M (2010) Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS One 5:e8784

    Article  PubMed  CAS  Google Scholar 

  193. Sandhu JK, Gardaneh M, Iwasiow R et al (2009) Astrocyte-secreted GDNF and glutathione antioxidant system protect neurons against 6OHDA cytotoxicity. Neurobiol Dis 33:405–414

    Article  PubMed  CAS  Google Scholar 

  194. Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116:1744–1754

    Article  PubMed  CAS  Google Scholar 

  195. Schipper HM (2004) Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 3:265–301

    Article  PubMed  CAS  Google Scholar 

  196. Schmidt S, Linnartz B, Mendritzki S et al (2011) Genetic mouse models for Parkinson’s disease display severe pathology in glial cell mitochondria. Hum Mol Genet 20:1197–1211

    Article  PubMed  CAS  Google Scholar 

  197. Scholz SW, Houlden H, Schulte C et al (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65:610–614

    Article  PubMed  CAS  Google Scholar 

  198. Schrag A, Ben-Shlomo Y, Quinn NP (1999) Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 354:1771–1775

    Article  PubMed  CAS  Google Scholar 

  199. Schrag A, Wenning GK, Quinn N, Ben-Shlomo Y (2008) Survival in multiple system atrophy. Mov Disord 23:294–296

    Article  PubMed  Google Scholar 

  200. Schwartz JP, Nishiyama N (1994) Neurotrophic factor gene expression in astrocytes during development and following injury. Brain Res Bull 35:403–407

    Article  PubMed  CAS  Google Scholar 

  201. Sheffield LG, Berman NE (1998) Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiol Aging 19:47–55

    Article  PubMed  CAS  Google Scholar 

  202. Shimura H, Schlossmacher MG, Hattori N et al (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293:263–269

    Article  PubMed  CAS  Google Scholar 

  203. Shults CW, Rockenstein E, Crews L et al (2005) Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci 25:10689–10699

    Article  PubMed  CAS  Google Scholar 

  204. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    Article  PubMed  CAS  Google Scholar 

  205. Singleton AB, Farrer M, Johnson J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  206. Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR (2003) Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 84:157–168

    Article  PubMed  CAS  Google Scholar 

  207. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  PubMed  CAS  Google Scholar 

  208. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  209. Soma H, Yabe I, Takei A, Fujiki N, Yanagihara T, Sasaki H (2006) Heredity in multiple system atrophy. J Neurol Sci 240:107–110

    Article  PubMed  CAS  Google Scholar 

  210. Song YJ, Lundvig DM, Huang Y et al (2007) p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am J Pathol 171:1291–1303

    Article  PubMed  CAS  Google Scholar 

  211. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208

    Article  PubMed  CAS  Google Scholar 

  212. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  213. Stefanova N, Eriksson H, Georgievska B, Poewe W, Wenning GK (2010) Myeloperoxidase inhibition ameliorates multiple system atrophy-like degeneration in a transgenic mouse model. Mov Disord 25(Suppl. 3):625

    Google Scholar 

  214. Stefanova N, Hainzer M, Stemberger S et al (2009) Striatal transplantation for multiple system atrophy—are grafts affected by alpha-synucleinopathy? Exp Neurol 219:368–371

    Article  PubMed  Google Scholar 

  215. Stefanova N, Klimaschewski L, Poewe W, Wenning GK, Reindl M (2001) Glial cell death induced by overexpression of alpha-synuclein. J Neurosci Res 65:432–438

    Article  PubMed  CAS  Google Scholar 

  216. Stefanova N, Mitschnigg M, Ghorayeb I et al (2004) Failure of neuronal protection by inhibition of glial activation in a rat model of striatonigral degeneration. J Neurosci Res 78:87–91

    Article  PubMed  CAS  Google Scholar 

  217. Stefanova N, Reindl M, Neumann M et al (2005) Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Am J Pathol 166:869–876

    Article  PubMed  CAS  Google Scholar 

  218. Stefanova N, Reindl M, Neumann M, Kahle PJ, Poewe W, Wenning GK (2007) Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord 22:2196–2203

    Article  PubMed  Google Scholar 

  219. Stefanova N, Schanda K, Klimaschewski L, Poewe W, Wenning GK, Reindl M (2003) Tumor necrosis factor-alpha-induced cell death in U373 cells overexpressing alpha-synuclein. J Neurosci Res 73:334–340

    Article  PubMed  CAS  Google Scholar 

  220. Stefanova N, Stemberger S, Fellner L et al (2010) Disturbance of innate immunity linked to toll-like receptor 4 promotes neurodegeneration in a transgenic alpha-synucleinopathy model. Mov Disord 25(Suppl. 2):210–211

    Google Scholar 

  221. Stefanova N, Tison F, Reindl M, Poewe W, Wenning GK (2005) Animal models of multiple system atrophy. Trends Neurosci 28:501–506

    Article  PubMed  CAS  Google Scholar 

  222. Stemberger S, Poewe W, Wenning GK, Stefanova N (2010) Targeted overexpression of human alpha-synuclein in oligodendroglia induces lesions linked to MSA-like progressive autonomic failure. Exp Neurol 224:459–464

    Article  PubMed  CAS  Google Scholar 

  223. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    Article  PubMed  CAS  Google Scholar 

  224. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    Article  PubMed  Google Scholar 

  225. Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77:1–8

    Article  PubMed  CAS  Google Scholar 

  226. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212

    Article  PubMed  Google Scholar 

  227. Su X, Federoff HJ, Maguire-Zeiss KA (2009) Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 16:238–254

    Article  PubMed  CAS  Google Scholar 

  228. Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29:1690–1701

    Article  PubMed  CAS  Google Scholar 

  229. Sugiyama I, Tanaka K, Akita M, Yoshida K, Kawase T, Asou H (2002) Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats. J Neurosci Res 70:309–317

    Article  PubMed  CAS  Google Scholar 

  230. Takahashi M, Tomizawa K, Fujita SC, Sato K, Uchida T, Imahori K (1993) A brain-specific protein p25 is localized and associated with oligodendrocytes, neuropil, and fiber-like structures of the CA3 hippocampal region in the rat brain. J Neurochem 60:228–235

    Article  PubMed  CAS  Google Scholar 

  231. Tanaka J, Maeda N (1996) Microglial ramification requires nondiffusible factors derived from astrocytes. Exp Neurol 137:367–375

    Article  PubMed  CAS  Google Scholar 

  232. Tanaka J, Okuma Y, Tomobe K, Nomura Y (2005) The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull 28:615–618

    Article  PubMed  CAS  Google Scholar 

  233. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518

    Article  PubMed  CAS  Google Scholar 

  234. Taylor DL, Pirianov G, Holland S et al (2010) Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. J Neurosci Res 88:1632–1644

    Article  PubMed  CAS  Google Scholar 

  235. Teismann P, Ferger B (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39:167–174

    Article  PubMed  CAS  Google Scholar 

  236. Theodore S, Cao S, McLean PJ, Standaert DG (2008) Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 67:1149–1158

    Article  PubMed  CAS  Google Scholar 

  237. Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022

    Article  PubMed  CAS  Google Scholar 

  238. Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  239. Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG (2003) Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 278:44405–44411

    Article  PubMed  CAS  Google Scholar 

  240. Togo T, Dickson DW (2002) Tau accumulation in astrocytes in progressive supranuclear palsy is a degenerative rather than a reactive process. Acta Neuropathol 104:398–402

    Article  PubMed  CAS  Google Scholar 

  241. Trojanowski JQ, Revesz T (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33:615–620

    Article  PubMed  CAS  Google Scholar 

  242. Tsuboi K, Grzesiak JJ, Bouvet M, Hashimoto M, Masliah E, Shults CW (2005) Alpha-synuclein overexpression in oligodendrocytic cells results in impaired adhesion to fibronectin and cell death. Mol Cell Neurosci 29:259–268

    Article  PubMed  CAS  Google Scholar 

  243. Ubhi K, Rockenstein E, Mante M et al (2010) Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J Neurosci 30:6236–6246

    Article  PubMed  CAS  Google Scholar 

  244. van Rossum D, Hanisch UK (2004) Microglia. Metab Brain Dis 19:393–411

    Article  PubMed  Google Scholar 

  245. Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352

    Article  PubMed  CAS  Google Scholar 

  246. Vila M, Jackson-Lewis V, Guegan C et al (2001) The role of glial cells in Parkinson’s disease. Curr Opin Neurol 14:483–489

    Article  PubMed  CAS  Google Scholar 

  247. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99:14–20

    Article  PubMed  CAS  Google Scholar 

  248. Wakabayashi K, Takahashi H (2006) Cellular pathology in multiple system atrophy. Neuropathology 26:338–345

    Article  PubMed  Google Scholar 

  249. Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) Alpha-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 249:180–182

    Article  PubMed  CAS  Google Scholar 

  250. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  PubMed  CAS  Google Scholar 

  251. Wang X, Zhu S, Drozda M et al (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci USA 100:10483–10487

    Article  PubMed  CAS  Google Scholar 

  252. Wenning GK, Quinn N, Magalhaes M, Mathias C, Daniel SE (1994) “Minimal change” multiple system atrophy. Mov Disord 9:161–166

    Article  PubMed  CAS  Google Scholar 

  253. Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG (2008) Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol 64:239–246

    Article  PubMed  CAS  Google Scholar 

  254. Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12:133–147

    Article  PubMed  CAS  Google Scholar 

  255. Wilhelmsson U, Bushong EA, Price DL et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103:17513–17518

    Article  PubMed  CAS  Google Scholar 

  256. Wu DC, Jackson-Lewis V, Vila M et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

  257. Wullner U, Schmitt I, Kammal M, Kretzschmar HA, Neumann M (2009) Definite multiple system atrophy in a German family. J Neurol Neurosurg Psychiatry 80:449–450

    Article  PubMed  CAS  Google Scholar 

  258. Yamada T, McGeer PL, McGeer EG (1992) Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins. Acta Neuropathol 84:100–104

    Article  PubMed  CAS  Google Scholar 

  259. Yamada T, McGeer PL, McGeer EG (1992) Some immunohistochemical features of argyrophilic grain dementia with normal cortical choline acetyltransferase levels but extensive subcortical pathology and markedly reduced dopamine. J Geriatr Psychiatry Neurol 5:3–13

    PubMed  CAS  Google Scholar 

  260. Yao SY, Ljunggren-Rose A, Chandramohan N, Whetsell WO Jr, Sriram S (2010) In vitro and in vivo induction and activation of nNOS by LPS in oligodendrocytes. J Neuroimmunol 229:146–156

    Article  PubMed  CAS  Google Scholar 

  261. Yazawa I, Giasson BI, Sasaki R et al (2005) Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45:847–859

    Article  PubMed  CAS  Google Scholar 

  262. Zarranz JJ, Alegre J, Gomez-Esteban JC et al (2004) The new mutation, E46 K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

  263. Zhang W, Wang T, Pei Z et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19:533–542

    Article  PubMed  CAS  Google Scholar 

  264. Zhang X, Haaf M, Todorich B et al (2005) Cytokine toxicity to oligodendrocyte precursors is mediated by iron. Glia 52:199–208

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This review was supported by grants of the Austrian Science Funds (FWF) P19989-B05 and SFB F44-B19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Stefanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellner, L., Jellinger, K.A., Wenning, G.K. et al. Glial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts. Acta Neuropathol 121, 675–693 (2011). https://doi.org/10.1007/s00401-011-0833-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0833-z

Keywords

Navigation