Skip to main content
Log in

Remodeling des Altersherzens

Sinusknotendysfunktion und Vorhofflimmern

Remodeling of the aging heart

Sinus node dysfunction and atrial fibrillation

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Zusammenfassung

Sinusknotendysfunktion („sick sinus syndrome“, SSS) und Vorhofflimmern (AF) zeigen eine zunehmende Inzidenz im Alter. Beide Störungen sind assoziiert mit kardiovaskulären Erkrankungen und treten nicht selten gemeinsam auf. Tatsächlich findet man bei beiden Störungen gleichartige Pathomechanismen wie strukturelles Remodeling in Form einer degenerativen Fibrose und funktionelles Remodeling in Form eines gestörten Ca2+-Handlings. Als Mediator des Remodelings steht eine exzessiv aktivierte CamKII (Ca2+/Calmodulin-abhängige Proteinkinase Typ II) im Mittelpunkt. Im Sinusknoten führt das Remodeling zur Apoptose und als Folge zu Sinusknotenstillstand oder Reentry (Tachyarrhythmie-Bradykardie-Syndrom). Im Vorhofmyokard begünstig das Remodeling ebenfalls Reentry bzw. dessen Triggermechanismen, insbesondere getriggerte Aktivität aufgrund später Nachdepolarisationen (DAD). SSS und AF könnten somit unterschiedliche Phänotypen derselben Veränderung im Vorhof sein. Andererseits kann nach dem Henne-und-Ei-Prinzip SSS das Auftreten von AF oder umgekehrt bewirken.

Abstract

The incidence of both sinus node dysfunction (SND) and atrial fibrillation (AF) increases with age. SND and AF frequently coexist. Likewise, they are often associated with cardiovascular diseases. Both arrhythmias share similar pathomechanisms such as structural and functional remodeling, i. e., degenerative fibrosis and altered Ca2+ handling, respectively. A growing body of evidence suggests an important role for the CamKII (Ca2+/calmodulin-dependent protein kinase II) in structural as well as in functional remodeling. In the sinus node, remodeling leads to degenerative fibrosis and as a consequence to sinus node arrest or to reentry (brady/tachycardia). In the atrium, remodeling sets the conditions for reentry and its triggering mechanisms, especially the conditions for triggered activity on the basis of delayed afterdepolarizations (DAD). Thus, SND and AF seem to be different phenotypes of related pathophysiological mechanisms. On the other hand, it remains controversial as to whether SND causes AF or vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Burstein B, Nattel S (2008) Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51(8):802–809

    Article  CAS  Google Scholar 

  2. Chen Y, Lu Y, Cheng C, Lin Y, Chen S, Chen Y (2014) Sinoatrial node electrical activity modulates pulmonary vein arrhythmogenesis. Int J Cardiol 173(3):447–452

    Article  Google Scholar 

  3. Chow GV, Marine JE, Fleg JL (2012) Epidemiology of arrhythmias and conduction disorders in older adults. Clin Geriatr Med 28(4):539–553

    Article  Google Scholar 

  4. Csepe TA, Kalyanasundaram A, Hansen BJ, Zhao J, Fedorov VV (2015) Fibrosis: a structural modulator of sinoatrial node physiology and dysfunction. Front Physiol 12(6):37

    Google Scholar 

  5. Csepe TA, Hansen BJ, Fedorov V (2016) Atrial fibrillation driver mechanisms: Insight from the isolated human heart. Trends Cardiovas Med 27(1):1–11

    Article  Google Scholar 

  6. Dobrzynski H, Boyett MR, Anderson RH, Path F (2007) New insights into pacemaker activity promoting understanding of Sick Sinus Syndrome. Circulation 115:1921–1932

    Article  Google Scholar 

  7. Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D’Souza A, Fraser JF, Inada S, Logantha S, Monfredi O, Morris GM, Moorman A, Nikolaidou T, Schneider H, Szuts V, Temple IP, Yanni J, Boyett MR (2013) Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther 139:260–288

    Article  CAS  Google Scholar 

  8. Glukhov A, Kalyanasundaram A, Lou Q, Hage L, Hansen B, Belevych A, Mohler P, Knollmann B, Periasamy M, Györke S, Fedorov V (2015) Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex. Eur Heart J 36(11):686–697

    Article  CAS  Google Scholar 

  9. Haissaguerre M, Shah A, Cochet H, Hocini M, Dubois R, Efimov I, Vigmond E, Bernus O, Trayanova N (2016) Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation. J Physiol 594(9):2387–2398

    Article  CAS  Google Scholar 

  10. Hao X, Zhang Y, Zhang X, Nirmalan M, Davies L, Konstantinou D, Yin F, Dobrzynski H, Wang X, Grace A, Zhang H, Boyett M, Huang CL-H, Lei M (2011) TGF-ß1-mediated fibrosis and Ion channel remodeling Are key mechanisms in producing the sinus node dysfunction associated with SCN5A deficiency and aging. Circ Arrhythm Electrophysiol 4:397–406

    Article  CAS  Google Scholar 

  11. Jadidi AS, Cochet H, Shah AJ, Kim SJ, Shinsuke Miyazaki ED, Sermesant M, Lehrmann H, Lederlin M, Linton N, Forclaz A, Nault I, Rivard L, Wright M, Liu X, Scherr D, Wilton SB, Roten L, Pascale P, Derval N, Sacher F, Knecht S, Keyl C, Hocini M, Montaudon M, Laurent F, Haïssaguerre M, Jaïs P (2013) Inverse relationship between Fractionated Electrograms and atrial fibrosis in persistent atrial fibrillation combined magnetic resonance imaging and high-density mapping. J Am Coll Cardiol 62:802–812

    Article  Google Scholar 

  12. John RM, Kumar S (2016) Sinus node and atrial arrhythmias. Circulation 133:1892–1900

    Article  Google Scholar 

  13. Matsuyamaa T, Inoueb S, Kobayashic Y, Sakaic T, Saitoc T, Katagiric T, Otaa H (2004) Anatomical diversity and age-related histological changes in the human right atrial posterolateral wall. Europace 6:307–315

    Article  Google Scholar 

  14. Monfredi O, Boyett MR (2015) Sick sinus syndrome and atrial fibrillation in older persons – A view from the sinoatrial nodal myocyte. J Mol Cell Cardiol 83:88–100

    Article  CAS  Google Scholar 

  15. Monfredi O, Dobrzynski H, Mondal T, Boyett MR, Morris GM (2010) The Anatomy and Physiology of the Sinatrial Node – A Contemporary Review. Pace 33:1392–1406

    Article  Google Scholar 

  16. Monfredi O, Maltsev VA, Lakatta EG (2013) Modern concepts concerning the origin of the heartbeat. Physiology 28:74–92

    Article  CAS  Google Scholar 

  17. Nattel S, Harada M (2014) Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J Am Coll Cardiol 63(22):2335–2345

    Article  Google Scholar 

  18. Nattel S, Burstein B, Dobrev D (2008) Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 1(1):62–73

    Article  Google Scholar 

  19. Pandit SV, Jalife JJ (2013) Rotors and the dynamics of cardiac fibrillation. Circ Res 112:849–862

    Article  CAS  Google Scholar 

  20. Rokita A, Anderson ME (2012) New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation 126(17):2125–2139

    Article  Google Scholar 

  21. Shiraishi I, Takamatsu T, Minamikawa T, Onouchi Z, Fujita S (1992) Quantitative Histological analysis of the human Sinoatrial node during growth and aging. Circulation 85:2176–2184

    Article  CAS  Google Scholar 

  22. Schotten U, Dobrev D, Platonov PG, Kottkamp H, Hindricks G (2016) Current controversies in determining the main mechanisms of atrial fibrillation. J Intern Med 279:428–438

    Article  CAS  Google Scholar 

  23. Scoote M, Williams AJ (2004) Myocardial calcium signalling and arrhythmia pathogenesis. Bioch Biophys Res Com 322:1286–1309

    Article  CAS  Google Scholar 

  24. Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110(12):1661–1677

    Article  CAS  Google Scholar 

  25. Tellez JO, Maczewski M, Yanni J, Sutyagin P, Mackiewicz U, Atkinson A, Inada S, Beresewicz A, Billeter R, Dobrzynski H, Boyett MR (2011) Ageing-dependent remodelling of ion channel and Ca2+ clock genes underlying sino-atrial node pacemaking. Exp Physiol 96:1163–1178

    Article  CAS  Google Scholar 

  26. Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 121(8):2955–2968

    Article  CAS  Google Scholar 

  27. Weirich J, Antoni H (2004) Physiologie und Pathophysiologie der elementaren Herzfunktionen. In: Rosskamm H, Neumann S, Kalusche D (Hrsg) Herzkrankheiten – Pathophysiologie, Diagnostik, Therapie. Springer, Berlin-Heidelberg, S 23–56

    Google Scholar 

  28. Yeh Y, Burstein B, Yan Qi X, Sakabe M, Chartier D, Comtois P, Wang Z, Kuo C, Nattel S (2009) Funny current Downregulation and sinus node dysfunction associated with atrial Tachyarrhythmia. A molecular basis for tachycardia-Bradycardia syndrome. Circulation 119:1576–1585

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Weirich.

Ethics declarations

Interessenkonflikt

J. Weirich gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weirich, J. Remodeling des Altersherzens. Herzschr Elektrophys 28, 29–38 (2017). https://doi.org/10.1007/s00399-017-0485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-017-0485-3

Schlüsselwörter

Keywords

Navigation