Skip to main content
Log in

Einsatz der kardialen MRT in der Elektrophysiologie

Aktueller Stand und Ausblicke in die Zukunft

Use of cardiac MRI in the field of electrophysiology

Present status and future aspects

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Zusammenfassung

Die invasive Ablationsbehandlung bei Patienten mit Herzrhythmusstörungen hat sich in den letzten Jahren zu einer Standarttherapie der modernen Elektrophysiologie entwickelt. Zum gegenwärtigen Zeitpunkt stellt die kardiale Magnetresonanztomographie (cMRT) ein wichtiges unterstützendes bildgebendes Verfahren bei der Durchführung von komplexen elektrophysiologischen Untersuchungen und Ablationsbehandlungen dar. Die cMRT wird in der klinischen Routine zur Erstellung von genauen dreidimensionalen (3D-)Darstellungen der Herzhöhlen sowie von komplexen anatomischen Strukturen genutzt. Durch die Weiterentwicklung der cMRT ist es zudem möglich geworden, das Substrat von komplexen Herzrhythmusstörungen, wie z. B. myokardiale Narben bei Patienten mit ventrikulären Tachykardien oder den strukturellen Umbau des linken Vorhofs bei Patienten mit Vorhofflimmern, zu erfassen. Durch die Möglichkeit der Fusion der verschiedenen bildgebenden Verfahren (Fluoroskopie, cMRT) dient dieser Ansatz in erster Linien der Planung und der sicheren Durchführung einer Ablationsbehandlung. Die direkte Visualisierung von induzierten Läsionen mithilfe der cMRT akut nach Ablationsbehandlung sowie im Langzeitverlauf vermag den Erfolg einer Therapie abzuschätzen und mögliche eingetretene Komplikationen frühzeitig zu erkennen. Der stetige Fortschritt der cMRT sowie die Entwicklung von MRT-tauglichen Stimulations- und Ablationskathetern hat die Ausgangspunkte für eine Verwirklichung einer elektrophysiologischen Behandlung am Menschen direkt im MRT gegeben. Die Durchführung von Ablationen unter der exakten Visualisierung des anatomischen Substrats, der akkuraten Katheternavigation und der Echtzeitvisualisierung von Läsionen im MRT verspricht die Erfolgsraten und die Sicherheit von komplexen Ablationsbehandlungen zu verbessern und die Elektrophysiologie in Zukunft zu revolutionieren.

Abstract

In recent years, ablation therapy has become the first-line treatment of modern electrophysiology in patients with cardiac arrhythmias. Today, cardiac magnetic resonance imaging (cMRI) is an important supportive imaging technique in the implementation of complex electrophysiological investigations and ablation therapy. In clinical routine, cMRI is used not only to generate accurate three-dimensional (3D) models of cavities of the heart but also for visualization of complex anatomical structures. The development of cMRI makes it possible to detect the underlying substrate of complex arrhythmias such as myocardial scar in patients with ventricular tachycardia or the structural remodeling of the left atrium in patients with atrial fibrillation. The opportunity of fusion of the different imaging modalities (e.g., fluoroscopy, cMRI) has become essential for the planning and the implementation of a safe ablation therapy. The possibility of direct visualization of induced lesions using cMRI after and in the long term after ablation can predict the success of therapy and detects potential complications. The continuous research in the field of cMRI and the development of MRI-compatible pacing and ablation catheters provided the basics for performing electrophysiological treatment in humans directly inside the MRI. The implementation of ablation using exact visualization of the anatomical substrate, precise catheter navigation and real-time visualization of lesions in cMRI promises to improve success rates and the safety of complex ablation treatment and may revolutionize electrophysiology in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Calkins H, Yong P, Miller JM, Olshansky B, Carlson M, Saul JP, Huang SK, Liem LB, Klein LS, Moser SA, Bloch DA, Gillette P, Prystowsky E (1999) Catheter ablation of accessory pathways, atrioventricular nodal reentrant tachycardia, and the atrioventricular junction: final results of a prospective, multicenter clinical trial. The Atakr Multicenter Investigators Group. Circulation 99(2):262–270

    Article  PubMed  CAS  Google Scholar 

  2. Marchlinski FE, Callans DJ, Gottlieb CD, Zado E (2000) Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation 101(11):1288–1296

    Article  PubMed  CAS  Google Scholar 

  3. Pappone C, Rosanio S, Oreto G, Tocchi M, Gugliotta F, Vicedomini G, Salvati A, Dicandia C, Mazzone P, Santinelli V, Gulletta S, Chierchia S (2000) Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation 102(21):2619–2628

    Article  PubMed  CAS  Google Scholar 

  4. Calkins H (2012) Catheter ablation to maintain sinus rhythm. Circulation 125:1439–1445

    Article  PubMed  Google Scholar 

  5. Cheema A, Dong J, Dalal D, Vasamreddy CR, Marine JE, Henrikson CA, Spragg D, Cheng A, Nazarian S, Sinha S, Halperin H, Berger R, Calkins H (2006) Long-term safety and efficacy of circumferential ablation with pulmonary vein isolation. J Cardiovasc Electrophysiol 17:1080–1085

    Article  PubMed  Google Scholar 

  6. Kolandaivelu A, Lardo A, Halperin H (2009) Cardiovascular magnetic resonance guided electrophysiology studies. J Cardiovasc Magn Reson 11:21

    Article  PubMed  Google Scholar 

  7. Susil RC, Yeung CJ, Halperin HR, Lardo AC, Atalar E (2002) Multifunctional interventional devices for MRI: a combined electrophysiology/MRI catheter. Magn Reson Med 47:594–600

    Article  PubMed  Google Scholar 

  8. Kühne T, Schmitt B, Berger F (2009) Aktueller Stand der interventionellen kardiovaskulären MRT. Kardio up 5(3):227–231

    Article  Google Scholar 

  9. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    Article  PubMed  CAS  Google Scholar 

  10. Kamphuis HC, de Leeuw JR, Derksen R, Hauer RN, Winnubst JA (2003) Implantable cardioverter defibrillator recipients: quality of life in recipients with and without ICD shock delivery: a prospective study. Europace 5(4):381–389

    Article  PubMed  CAS  Google Scholar 

  11. Connolly SJ, Dorian P, Roberts RS et al (2006) Comparison of beta-blockers, amiodarone plus beta-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators: the OPTIC Study: a randomized trial. JAMA 295(2):165–171

    Article  PubMed  CAS  Google Scholar 

  12. Natale A, Raviele A, Al-Ahmad A et al (2010) Venice chart international consensus document on ventricular tachycardia/ventricular fibrillation ablation. J Cardiovasc Electrophysiol 21(3):339–379

    Article  PubMed  Google Scholar 

  13. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, Kadish AH, Goldberger JJ (2005) Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 45(7):1104–1108

    Article  PubMed  Google Scholar 

  14. Nazarian S, Bluemke DA, Lardo AC, Zviman MM, Watkins SP, Dickfeld TL, Meininger GR, Roguin A, Calkins H, Tomaselli GF, Weiss RG, Berger RD, Lima JA, Halperin HR (2005) Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 112(18):2821–2825

    Article  PubMed  Google Scholar 

  15. Wijnmaalen AP, van der Geest RJ, van Huls van Taxis CFB et al (2011) Head-to-head comparison of contrast-enhanced magnetic resonance imaging and electroanatomical voltage mapping to assess post-infarct scar characteristics in patients with ventricular tachycardias: real-time image integration and reversed registration. Eur Heart J 32(1):104–114

    Article  PubMed  Google Scholar 

  16. Perez-David E, Arenal A, Rubio-Guivernau JL et al (2011) Noninvasive identification of ventricular tachycardia-related conducting channels using contrast-enhanced magnetic resonance imaging in patients with chronic myocardial infarction: comparison of signal intensity scar mapping and endocardial voltage mapping. J Am Coll Cardiol 57(2):184–194

    Article  PubMed  Google Scholar 

  17. Reddy VY, Neuzil P, Taborsky M, Ruskin JN (2003) Short-term results of substrate mapping and radiofrequency ablation of ischemic ventricular tachycardia using a saline-irrigated catheter. J Am Coll Cardiol 41:2228–2236

    Article  PubMed  Google Scholar 

  18. Fuster V, Rydén LE, Cannom DS et al, American College of Cardiology/American Heart Association Task Force on Practice Guidelines, European Society of Cardiology Committee for Practice Guidelines, European Heart Rhythm Association, Heart Rhythm Society (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for practice guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 114:700–752

    Article  Google Scholar 

  19. Haissaguerre M et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339(10):659–666

    Article  PubMed  CAS  Google Scholar 

  20. Dong J, Calkins H (2005) Technology insight: catheter ablation of the pulmonary veins in the treatment of atrial fibrillation. Nat Clin Pract Cardiovasc Med 2(3):159–166

    Article  PubMed  Google Scholar 

  21. Mahnkopf C, Duecker M, Holzmann S et al (2012) Variant pulmonary vein anatomy detected by cardiac MRI may predict outcome after pulmonary vein isolation in patients with atrial fibrillation. J Cardiovasc Magn Reso 14(Suppl 1):P202

    Article  Google Scholar 

  22. Cury RC, Abbara S, Schmidt S, Malchano ZJ, Neuzil P, Weichet J, Ferencik M, Hoffmann U, Ruskin JN, Brady TJ, Reddy VY (2005) Relationship of the esophagus and aorta to the left atrium and pulmonary veins: implications for catheter ablation of atrial fibrillation. Heart Rhythm 2(12):1317–1323

    Article  PubMed  Google Scholar 

  23. Caponi D, Corleto A, Scaglione M, Blandino A et al (2010) Ablation of atrial fibrillation: does the addition of three-dimensional magnetic resonance imaging of the left atrium to electroanatomic mapping improve the clinical outcome? A randomized comparision of Carto-Merge vs. Carto-XP three-dimensional mapping ablation in patients with paroxysmal and persistent atrial fibrillation. Europace 12:1098–1104

    Article  PubMed  Google Scholar 

  24. Akoum N, Daccarett M, McGann C, Segerson N, Vergara G, Kuppahally S, Badger T, Burgon N, Haslam T, Kholmovski E, Macleod R, Marrouche N (2011) Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J Cardiovasc Electrophysiol 22(1):16–22

    Article  PubMed  Google Scholar 

  25. Mahnkopf C, Badger TJ, Burgon NS, Daccarett M, Haslam TS, Badger CT, McGann CJ, Akoum N, Kholmovski E, Macleod RS, Marrouche NF (2010) Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm 7(10):1475–1481

    Article  PubMed  Google Scholar 

  26. Mc Gann C, Kholmovski E, Blauer J et al (2011) Dark regions of no-reflow on late gadolinium enhancement magnetic resonance imaging result in scar formation after atrial fibrillation ablation. J Am Coll Cardiol 58(2):177–185

    Article  Google Scholar 

  27. Badger TJ, Adjei-Poku YA, Burgon NS, Kalvaitis S, Shaaban A, Sommers DN, Blauer JJ, Fish EN, Akoum N, Haslem TS, Kholmovski EG, MacLeod RS, Adler DG, Marrouche NF (2009) Initial experience of assessing esophageal tissue injury and recovery using delayed-enhancement MRI after atrial fibrillation ablation. Circ Arrhythm Electrophysiol 2(6):620–625

    Article  PubMed  Google Scholar 

  28. Badger TJ, Daccarett M, Akoum NW et al (2010) Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circ Arrhythm Electrophysiol 3(3):249–259

    Article  PubMed  Google Scholar 

  29. Vergara G, Blauer J, Ranjan R et al (2011) Feasibility of electro-anatomical mapping and ablatin concept using 3-Tesla real-time MRI guidance. Europace 13(3). doi:10.1093/europace/eur217

  30. Sommer P, Grothoff M, Eitel C, Gaspar T, Piorkowski C, Gutberlet M, Hindricks G (2012) Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. Europace Epub ahead of print

Download references

Interessenkonflikt

Die Autoren geben an, dass keine Interessenkonflikte bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christan Mahnkopf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahnkopf, C., Halbfass, P., Turschner, O. et al. Einsatz der kardialen MRT in der Elektrophysiologie. Herzschr Elektrophys 23, 275–280 (2012). https://doi.org/10.1007/s00399-012-0238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-012-0238-2

Schlüsselwörter

Keywords

Navigation