Skip to main content
Log in

Instabilities of a thin viscoelastic liquid film flowing down an inclined plane in the presence of a uniform electromagnetic field

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The effect of a uniform electromagnetic field on the stability of a thin layer of an electrically conducting viscoelastic liquid flowing down on a nonconducting inclined plane is studied under the induction-free approximation. Long-wave expansion method is used to obtain the surface evolution equation. The stabilizing role of the magnetic parameter M and the destabilizing role of the viscoelastic parameter Γ as well as the electric parameter E on this flow field are established. A novel result which emerges from our analysis is that the stabilizing effect of M holds no longer true for both viscous and viscoelastic fluids in the presence of electromagnetic field. It is found that when E exceeds a certain critical value depending on Γ, magnetic field exhibits the destabilizing effect on this flow field. Indeed, this critical value decreases with the increase of the viscoelastic parameter Γ since it has a destabilizing effect inherently. Another noteworthy result which arises from the weakly nonlinear stability analysis is that both the subcritical unstable and supercritical stable zones are possible together with the unconditional stable and explosive zones for different values of Γ depending on the wave number k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alekseenko SV, Nakoryakov VE, Pokusaev BG (1994) Wave flow in liquid films, 3rd edn. Begell House, New York

    Google Scholar 

  • Andersson HI, Dahi EN (1999) Gravity-driven flow of a viscoelastic liquid film along a vertical wall. J Phys D : Appl Phys 32:1557–1562

    Article  Google Scholar 

  • Beard DW, Walters K (1964) Elastico-viscous boundary-layer flow I. Two dimensional flow near a stagnation point. Proc Comb Phil Soc 60:667–674

    Article  Google Scholar 

  • Benjamin TB (1957) Wave formation in laminar flow down an inclined plane. J Fluid Mech 2:554–574

    Article  Google Scholar 

  • Benney DJ (1966) Long waves on liquid films. J Math Phy 45:150–155

    Article  Google Scholar 

  • Blum E, Mayorov M, Tsebers A (1989) Magnetic fluids. Zinane Riga

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, Oxford

    Google Scholar 

  • Chang HC (1994) Wave evolution on a falling film. Ann Rev Fluid Mech 26:103–136

    Article  Google Scholar 

  • Cheng PJ, Lai HY, Chen CK (2000) Stability analysis of thin viscoelastic liquid film flowing down on a vertical wall. J Phys D : Appl Phys 32:1674–1682

    Article  Google Scholar 

  • Dandapat BS, Gupta AS (1978) Long waves on a layer of a visco-elastic fluid down an inclined plane. Rheol Acta 17:492–499

    Article  Google Scholar 

  • Dandapat BS, Gupta AS (1997) Solitary waves on the surface of a viscoelastic fluid running down an inclined plane. Rheol Acta 36:135–143

    Article  Google Scholar 

  • Dandapat BS, Mukhopadhyay A (2003) Finite amplitude long wave instability of a film of conducting fluid flowing down an inclined plane in presence of electromagnetic field. Int J Appl Maths Eng 8:379–393

    Google Scholar 

  • Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dholey S (2016) Magnetohydrodynamic unsteady separated stagnation-point flow of a viscous fluid over a moving plate. ZAMM 96:707–720

    Article  Google Scholar 

  • Fulford GD (1964) The flow of liquid in thin films. Adv Chem Eng 5:151–236

    Article  Google Scholar 

  • Glukhikh VA, Tananaev AV, Kirilov IR (1987) Magnetohydrodynamics in the nuclear energy systems. Energoatomizdat, Moscow

    Google Scholar 

  • Gordeev YN, Murzenko VV (1990) Wave film flows of a conducting viscous fluid in the tangential magnetic field. Appl Math Theor Phys 3:96–100

    Google Scholar 

  • Gonzalez A, Castellanos A (1996) Nonlinear electrodynamic waves on films falling down an inclined plane. Phys Rev E 53:3573–3578

    Article  Google Scholar 

  • Gupta AS (1967) Stability of a visco-elastic liquid film flowing down an inclined plane. J Fluid Mech 28:17–28

    Article  Google Scholar 

  • Gupta AS, Rai L (1968) Note on the stability of a visco-elastic liquid film flowing down an inclined plane. J Fluid Mech 33:87–91

    Article  Google Scholar 

  • Kapitza PL (1949) Wave flow of thin viscous liquid films. Zh Eksp Eng Teor Fiz 18:3–28

    Google Scholar 

  • Korsunsky S (1999) Long waves on a thin layer of conducting fluid flowing down an inclined plane in an electromagnetic field. Eur J Mech B/Fluids 18:295–313

    Article  Google Scholar 

  • Lai W (1967) Stability of an elastico-viscous liquid film flowing down an inclined plane. Phys Fluids 10:844–847

    Article  Google Scholar 

  • Lin SP, Wang CY (1985) Encyclopedia of fluid mechanics. Ed Cheremisioff Gulf Houston TX 1:931–951

    Google Scholar 

  • Lin SP (1974) Finite amplitude side-band stability of a viscous film. J Fluid Mech 63:417–429

    Article  Google Scholar 

  • O’Brien SBG, Schwartz LW (2002) Theory of modeling of thin film flows. Encyclopedia of surface and colloid science Ed Marcel Dekker, New York, pp 5283–5297

    Google Scholar 

  • Oron A, Gottlieb O (2004) Subcritical and supercritical bifurcations of the first- and second-order Benney equations. J Eng Maths 50:121–140

    Article  Google Scholar 

  • Shercliff JA (1965) A textbook of magnetohydrodynamics. Pergamon Press, Oxford

    Google Scholar 

  • Uma B, Usha R (2006) Dynamics of a thin viscoelastic film on an inclined plane. Int J Eng Sc 44:1449–1481

    Article  Google Scholar 

  • Yih CS (1963) Stability of liquid flow down an inclined plane. Phys of Fluids 6:321–334

    Article  Google Scholar 

Download references

Acknowledgments

The author is very grateful to the editor and reviewer for their attention to the original manuscript and constructive suggestions that essentially improved the presentation of the paper. Thanks are also due to Mrs. A. Dholey and Dr. P. Sengupta for their kind cooperation during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibdas Dholey.

Appendices

Appendix: A

$$\begin{array}{@{}rcl@{}} L_0 &\equiv& \frac{\partial}{\partial t} + A \frac{\partial}{\partial x} + \left( B\frac{\partial^2}{\partial x^2} + C \frac{\partial^4}{\partial x^4} \right), \end{array} $$
(72)
$$\begin{array}{@{}rcl@{}} L_1 &\equiv& \frac{\partial}{\partial t_1}+\frac{\partial}{\partial x_1} \left[A + 2 \left( B \frac{\partial}{\partial x } + 2 C \frac{\partial^3} {\partial x^3 } \right) \right], \end{array} $$
(73)
$$\begin{array}{@{}rcl@{}} L_2 &\equiv& \frac{\partial}{\partial t_2} + \frac{\partial^2} {\partial x_1^2} \left( B + 6 C \frac{\partial^2}{\partial x^2} \right), \end{array} $$
(74)
$$\begin{array}{@{}rcl@{}} N_2 &=& A^{\prime} \eta_1 \frac{\partial \eta_1}{\partial x} + B^{\prime} \eta_1 \frac{\partial^2 \eta_1}{\partial x^2} + C^{\prime} \eta_1 \frac{\partial^4 \eta_1}{\partial x^4}, \end{array} $$
(75)
$$\begin{array}{@{}rcl@{}} N_3 &=& A^{\prime} \left[\eta_1 \left( \frac{\partial \eta_2}{\partial x} + \frac{\partial \eta_1}{\partial x_1}\right) + \eta_2\frac{\partial \eta_1}{\partial x} \right]\\ &&+ B^{\prime} \left[ \eta_1 \left( \frac{\partial^2 \eta_2}{\partial x^2} + 2 \frac{\partial^2 \eta_1}{\partial x \partial x_1}\right) + \eta_2 \frac{\partial^2 \eta_1} {\partial x^2} \right]\\ &&+ C^{\prime} \left[\eta_1 \left( \frac{\partial^4 \eta_2}{\partial x^4} + 4 \frac{\partial^4 \eta_1}{\partial x^3 \partial x_1} \right) + \eta_2 \frac{\partial^4 \eta_1}{\partial x^4} \right]\\ &&+ \frac{1}{2} A^{\prime\prime}{\eta_1}^2 \frac{\partial \eta_1}{\partial x}\,+\, \frac{1}{2} B^{\prime\prime}{\eta_1}^2 \frac{\partial^2 \eta_1}{\partial x^2} + \frac{1}{2} C^{\prime\prime}{\eta_1}^2 \frac{\partial^4 \eta_1}{\partial x^4}. \end{array} $$
(76)

Appendix: B

$$\begin{array}{@{}rcl@{}} \omega_i^{\prime} &=& \omega_i \sigma^{-2}, \end{array} $$
(77)
$$\begin{array}{@{}rcl@{}} J_0 &=& J_{0r} + i J_{0i} = 0 + i 2k \left( 2 C k^2 - B \right)\sigma^{-1}, \end{array} $$
(78)
$$\begin{array}{@{}rcl@{}} J_1 &=& J_{1r} + i J_{1i} = \left( B - 6 C k^2 \right) + i 0, \end{array} $$
(79)
$$\begin{array}{@{}rcl@{}} J_2 &=& - A^{\prime} {\bar H_{1i}}\\ &&+ \left[ \frac{1}{2} \left( C^{\prime\prime} k^4 - B^{\prime\prime} k^2 \right) + \left( 7 C^{\prime} k^4 - B^{\prime} k^2 \right) {\bar H_{1r}} \right], \\ &=& \frac{1}{2} \left( -B^{\prime\prime} k^2 + C^{\prime\prime} k^4 \right)\\ &&+ \left[ \frac{(A^{\prime})^2 k^2 \,-\, 2 \left( B^{\prime} k^2 \,-\,7 C^{\prime} k^4 \right) \left( B^{\prime} k^2 \,-\, C^{\prime} k^4 \right)} {16 C k^4 \,-\, 4 B k^2} \right], \end{array} $$
(80)
$$\begin{array}{@{}rcl@{}} J_4 &=& A^{\prime} k {\bar H_{1r}} + \frac{1}{2} A^{\prime\prime} k + \left( 7 C^{\prime} k^4 - B^{\prime} k^2 \right) {\bar H_{1i}}, \\ &=& \frac{1}{2}A^{\prime\prime} k\\ &&+ \left[ \frac{A^{\prime} k \left( B^{\prime} k^2 \,-\,7 C^{\prime} k^4 \right) \,+\, 2 A^{\prime} k \left( B^{\prime} k^2 \,-\, C^{\prime} k^4 \right)} {16 C k^4 - 4 B k^2} \right]. \end{array} $$
(81)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dholey, S. Instabilities of a thin viscoelastic liquid film flowing down an inclined plane in the presence of a uniform electromagnetic field. Rheol Acta 56, 325–340 (2017). https://doi.org/10.1007/s00397-016-0992-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0992-x

Keywords

Navigation